librarian-bot commited on
Commit
4cbfc7d
1 Parent(s): 08ff102

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`bert-base-cased`](https://huggingface.co/bert-base-cased) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!

Files changed (1) hide show
  1. README.md +17 -16
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
@@ -9,12 +11,18 @@ metrics:
9
  - recall
10
  - f1
11
  - accuracy
 
 
 
 
 
 
12
  model-index:
13
  - name: bert-finetuned-ner-ontonotes
14
  results:
15
  - task:
16
- name: Token Classification
17
  type: token-classification
 
18
  dataset:
19
  name: ontonotes5
20
  type: ontonotes5
@@ -22,25 +30,18 @@ model-index:
22
  split: train
23
  args: ontonotes5
24
  metrics:
25
- - name: Precision
26
- type: precision
27
  value: 0.8567258883248731
28
- - name: Recall
29
- type: recall
30
  value: 0.8841595180407308
31
- - name: F1
32
- type: f1
33
  value: 0.8702265476459025
34
- - name: Accuracy
35
- type: accuracy
36
  value: 0.9754933764288157
37
- widget:
38
- - text: 'Hi! I am jack. I live in California and I work for Apple '
39
- example_title: Example 1
40
- - text: 'Thi book is amazing! I bought it on Amazon for 4$. '
41
- example_title: Example 2
42
- language:
43
- - en
44
  ---
45
 
46
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  tags:
6
  - generated_from_trainer
 
11
  - recall
12
  - f1
13
  - accuracy
14
+ widget:
15
+ - text: 'Hi! I am jack. I live in California and I work for Apple '
16
+ example_title: Example 1
17
+ - text: 'Thi book is amazing! I bought it on Amazon for 4$. '
18
+ example_title: Example 2
19
+ base_model: bert-base-cased
20
  model-index:
21
  - name: bert-finetuned-ner-ontonotes
22
  results:
23
  - task:
 
24
  type: token-classification
25
+ name: Token Classification
26
  dataset:
27
  name: ontonotes5
28
  type: ontonotes5
 
30
  split: train
31
  args: ontonotes5
32
  metrics:
33
+ - type: precision
 
34
  value: 0.8567258883248731
35
+ name: Precision
36
+ - type: recall
37
  value: 0.8841595180407308
38
+ name: Recall
39
+ - type: f1
40
  value: 0.8702265476459025
41
+ name: F1
42
+ - type: accuracy
43
  value: 0.9754933764288157
44
+ name: Accuracy
 
 
 
 
 
 
45
  ---
46
 
47
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You