nickprock commited on
Commit
a84bb04
1 Parent(s): 07b3744

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - ontonotes5
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-finetuned-ner-ontonotes
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: ontonotes5
20
+ type: ontonotes5
21
+ config: ontonotes5
22
+ split: train
23
+ args: ontonotes5
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8567258883248731
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8841595180407308
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8702265476459025
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9754933764288157
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-finetuned-ner-ontonotes
43
+
44
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ontonotes5 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1503
47
+ - Precision: 0.8567
48
+ - Recall: 0.8842
49
+ - F1: 0.8702
50
+ - Accuracy: 0.9755
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 6
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0842 | 1.0 | 7491 | 0.0950 | 0.8524 | 0.8715 | 0.8618 | 0.9745 |
82
+ | 0.0523 | 2.0 | 14982 | 0.1044 | 0.8449 | 0.8827 | 0.8634 | 0.9744 |
83
+ | 0.036 | 3.0 | 22473 | 0.1118 | 0.8529 | 0.8843 | 0.8683 | 0.9760 |
84
+ | 0.0231 | 4.0 | 29964 | 0.1240 | 0.8589 | 0.8805 | 0.8696 | 0.9752 |
85
+ | 0.0118 | 5.0 | 37455 | 0.1416 | 0.8570 | 0.8804 | 0.8685 | 0.9753 |
86
+ | 0.0077 | 6.0 | 44946 | 0.1503 | 0.8567 | 0.8842 | 0.8702 | 0.9755 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.22.1
92
+ - Pytorch 1.12.1+cu113
93
+ - Datasets 2.5.1
94
+ - Tokenizers 0.12.1