update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- ontonotes5
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bert-finetuned-ner-ontonotes
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: ontonotes5
|
20 |
+
type: ontonotes5
|
21 |
+
config: ontonotes5
|
22 |
+
split: train
|
23 |
+
args: ontonotes5
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8567258883248731
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.8841595180407308
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8702265476459025
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9754933764288157
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# bert-finetuned-ner-ontonotes
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ontonotes5 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.1503
|
47 |
+
- Precision: 0.8567
|
48 |
+
- Recall: 0.8842
|
49 |
+
- F1: 0.8702
|
50 |
+
- Accuracy: 0.9755
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 6
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.0842 | 1.0 | 7491 | 0.0950 | 0.8524 | 0.8715 | 0.8618 | 0.9745 |
|
82 |
+
| 0.0523 | 2.0 | 14982 | 0.1044 | 0.8449 | 0.8827 | 0.8634 | 0.9744 |
|
83 |
+
| 0.036 | 3.0 | 22473 | 0.1118 | 0.8529 | 0.8843 | 0.8683 | 0.9760 |
|
84 |
+
| 0.0231 | 4.0 | 29964 | 0.1240 | 0.8589 | 0.8805 | 0.8696 | 0.9752 |
|
85 |
+
| 0.0118 | 5.0 | 37455 | 0.1416 | 0.8570 | 0.8804 | 0.8685 | 0.9753 |
|
86 |
+
| 0.0077 | 6.0 | 44946 | 0.1503 | 0.8567 | 0.8842 | 0.8702 | 0.9755 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.22.1
|
92 |
+
- Pytorch 1.12.1+cu113
|
93 |
+
- Datasets 2.5.1
|
94 |
+
- Tokenizers 0.12.1
|