nickprock commited on
Commit
b08c525
1 Parent(s): 110a475

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - ontonotes5
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-finetuned-ner-ontonotes
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: ontonotes5
20
+ type: ontonotes5
21
+ config: ontonotes5
22
+ split: train
23
+ args: ontonotes5
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8535359959297889
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8788553467356427
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8660106468785288
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9749625470373822
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # distilbert-finetuned-ner-ontonotes
43
+
44
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the ontonotes5 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1448
47
+ - Precision: 0.8535
48
+ - Recall: 0.8789
49
+ - F1: 0.8660
50
+ - Accuracy: 0.9750
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 6
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0937 | 1.0 | 7491 | 0.0998 | 0.8367 | 0.8587 | 0.8475 | 0.9731 |
82
+ | 0.0572 | 2.0 | 14982 | 0.1084 | 0.8338 | 0.8759 | 0.8543 | 0.9737 |
83
+ | 0.0403 | 3.0 | 22473 | 0.1145 | 0.8521 | 0.8707 | 0.8613 | 0.9748 |
84
+ | 0.0265 | 4.0 | 29964 | 0.1222 | 0.8535 | 0.8815 | 0.8672 | 0.9752 |
85
+ | 0.0148 | 5.0 | 37455 | 0.1365 | 0.8536 | 0.8770 | 0.8651 | 0.9747 |
86
+ | 0.0111 | 6.0 | 44946 | 0.1448 | 0.8535 | 0.8789 | 0.8660 | 0.9750 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.22.1
92
+ - Pytorch 1.12.1+cu113
93
+ - Datasets 2.5.1
94
+ - Tokenizers 0.12.1