Update README.md
Browse files
README.md
CHANGED
@@ -5,10 +5,15 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -26,14 +31,13 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
-
```
|
35 |
-
|
36 |
|
|
|
37 |
|
38 |
## Usage (HuggingFace Transformers)
|
39 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
@@ -51,11 +55,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -69,6 +73,7 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
69 |
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
|
|
72 |
```
|
73 |
|
74 |
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- unicamp-dl/mmarco
|
11 |
+
language:
|
12 |
+
- it
|
13 |
+
library_name: sentence-transformers
|
14 |
---
|
15 |
|
16 |
+
# MMARCO-bert-base-italian-uncased
|
17 |
|
18 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
|
|
31 |
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
+
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
35 |
|
36 |
+
model = SentenceTransformer('nickprock/sentence-bert-base-italian-uncased')
|
37 |
embeddings = model.encode(sentences)
|
38 |
print(embeddings)
|
|
|
|
|
39 |
|
40 |
+
```
|
41 |
|
42 |
## Usage (HuggingFace Transformers)
|
43 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
|
55 |
|
56 |
|
57 |
# Sentences we want sentence embeddings for
|
58 |
+
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
59 |
|
60 |
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
|
62 |
+
model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-uncased')
|
63 |
|
64 |
# Tokenize sentences
|
65 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
73 |
|
74 |
print("Sentence embeddings:")
|
75 |
print(sentence_embeddings)
|
76 |
+
|
77 |
```
|
78 |
|
79 |
|