Update README.md
Browse files
README.md
CHANGED
@@ -8,10 +8,11 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
# {
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
@@ -26,11 +27,12 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
|
|
34 |
```
|
35 |
|
36 |
|
@@ -51,11 +53,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -69,6 +71,7 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
69 |
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
|
|
72 |
```
|
73 |
|
74 |
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# {multi-sentence-BERTino}
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
+
This model is trained from [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) using [mmarco italian](https://huggingface.co/datasets/unicamp-dl/mmarco) (200K) and [stsb italian](https://huggingface.co/datasets/stsb_multi_mt).
|
16 |
<!--- Describe your model here -->
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
|
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
|
31 |
|
32 |
+
model = SentenceTransformer('nickprock/multi-sentence-BERTino')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
+
|
36 |
```
|
37 |
|
38 |
|
|
|
53 |
|
54 |
|
55 |
# Sentences we want sentence embeddings for
|
56 |
+
sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.']
|
57 |
|
58 |
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('nickprock/multi-sentence-BERTino')
|
60 |
+
model = AutoModel.from_pretrained('nickprock/multi-sentence-BERTino')
|
61 |
|
62 |
# Tokenize sentences
|
63 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
71 |
|
72 |
print("Sentence embeddings:")
|
73 |
print(sentence_embeddings)
|
74 |
+
|
75 |
```
|
76 |
|
77 |
|