Upload 11 files
Browse files- 1_Pooling/config.json +3 -1
- README.md +24 -18
- config_sentence_transformers.json +1 -1
- model.safetensors +1 -1
1_Pooling/config.json
CHANGED
@@ -3,5 +3,7 @@
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
7 |
}
|
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
}
|
README.md
CHANGED
@@ -1,24 +1,18 @@
|
|
1 |
---
|
|
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
9 |
-
datasets:
|
10 |
-
- stsb_multi_mt
|
11 |
-
- unicamp-dl/mmarco
|
12 |
-
language:
|
13 |
-
- it
|
14 |
-
library_name: sentence-transformers
|
15 |
---
|
16 |
|
17 |
-
# {
|
18 |
|
19 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
20 |
|
21 |
-
This model is trained from [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) using [mmarco italian](https://huggingface.co/datasets/unicamp-dl/mmarco) (200K) and [stsb italian](https://huggingface.co/datasets/stsb_multi_mt).
|
22 |
<!--- Describe your model here -->
|
23 |
|
24 |
## Usage (Sentence-Transformers)
|
@@ -33,12 +27,11 @@ Then you can use the model like this:
|
|
33 |
|
34 |
```python
|
35 |
from sentence_transformers import SentenceTransformer
|
36 |
-
sentences = ["
|
37 |
|
38 |
-
model = SentenceTransformer('
|
39 |
embeddings = model.encode(sentences)
|
40 |
print(embeddings)
|
41 |
-
|
42 |
```
|
43 |
|
44 |
|
@@ -59,11 +52,11 @@ def mean_pooling(model_output, attention_mask):
|
|
59 |
|
60 |
|
61 |
# Sentences we want sentence embeddings for
|
62 |
-
sentences = ['
|
63 |
|
64 |
# Load model from HuggingFace Hub
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
66 |
-
model = AutoModel.from_pretrained('
|
67 |
|
68 |
# Tokenize sentences
|
69 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +70,6 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
77 |
|
78 |
print("Sentence embeddings:")
|
79 |
print(sentence_embeddings)
|
80 |
-
|
81 |
```
|
82 |
|
83 |
|
@@ -94,7 +86,7 @@ The model was trained with the parameters:
|
|
94 |
|
95 |
**DataLoader**:
|
96 |
|
97 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
98 |
```
|
99 |
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
100 |
```
|
@@ -117,6 +109,20 @@ The model was trained with the parameters:
|
|
117 |
|
118 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
Parameters of the fit()-Method:
|
121 |
```
|
122 |
{
|
@@ -140,7 +146,7 @@ Parameters of the fit()-Method:
|
|
140 |
```
|
141 |
SentenceTransformer(
|
142 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
143 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
144 |
)
|
145 |
```
|
146 |
|
|
|
1 |
---
|
2 |
+
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
- transformers
|
9 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
+
# {MODEL_NAME}
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
16 |
<!--- Describe your model here -->
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
|
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
|
|
35 |
```
|
36 |
|
37 |
|
|
|
52 |
|
53 |
|
54 |
# Sentences we want sentence embeddings for
|
55 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
59 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
70 |
|
71 |
print("Sentence embeddings:")
|
72 |
print(sentence_embeddings)
|
|
|
73 |
```
|
74 |
|
75 |
|
|
|
86 |
|
87 |
**DataLoader**:
|
88 |
|
89 |
+
`torch.utils.data.dataloader.DataLoader` of length 31250 with parameters:
|
90 |
```
|
91 |
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
92 |
```
|
|
|
109 |
|
110 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
111 |
|
112 |
+
**DataLoader**:
|
113 |
+
|
114 |
+
`torch.utils.data.dataloader.DataLoader` of length 31250 with parameters:
|
115 |
+
```
|
116 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
117 |
+
```
|
118 |
+
|
119 |
+
**Loss**:
|
120 |
+
|
121 |
+
`sentence_transformers.losses.CachedMultipleNegativesRankingLoss.CachedMultipleNegativesRankingLoss` with parameters:
|
122 |
+
```
|
123 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
124 |
+
```
|
125 |
+
|
126 |
Parameters of the fit()-Method:
|
127 |
```
|
128 |
{
|
|
|
146 |
```
|
147 |
SentenceTransformer(
|
148 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
149 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
150 |
)
|
151 |
```
|
152 |
|
config_sentence_transformers.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "2.
|
4 |
"transformers": "4.36.0",
|
5 |
"pytorch": "2.0.0"
|
6 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "2.3.1",
|
4 |
"transformers": "4.36.0",
|
5 |
"pytorch": "2.0.0"
|
6 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 270316376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97427de98b80da98b373899f7fe3e6d5de04f987ec0cc3ad88fb0d4e7d772f03
|
3 |
size 270316376
|