nidek commited on
Commit
546627b
1 Parent(s): e3fef08

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.35 +/- 0.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db743d39b5947bfb0240c0b61fbe7e8a1659e9dd91c20aaf15cadae9d3fe6eb9
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efd430284c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7efd43029150>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674424298720132874,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqDdPuofiLza9gs/rqDdPuofiLza9gs/rqDdPuofiLza9gs/rqDdPuofiLza9gs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGW7JPh8kDD/29AM/S4+vPgqeEb9EK7S/VaGTveXjnL8/V9k/nH/BP/5hyL+8zLq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]]",
60
+ "desired_goal": "[[ 0.3934181 0.54742616 0.51545656]\n [ 0.3428901 -0.56881773 -1.4075704 ]\n [-0.07208506 -1.2257048 1.697975 ]\n [ 1.5117068 -1.5654905 -1.459373 ]]",
61
+ "observation": "[[ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhJwCvB3D7LsLjuo9zf8GvnbyNr3gR5Q91w+KPD7et7w5HFI9tJXFvcRZDT4FbdQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00797189 -0.00722541 0.11452874]\n [-0.13183518 -0.04466482 0.07240272]\n [ 0.01685326 -0.02244484 0.05129645]\n [-0.09647694 0.13803774 0.10372356]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInmLVIMzt3b+UhpRSlIwBbJRLMowBdJRHQKSenI8yN4t1fZQoaAZoCWgPQwiM17yqs9rvv5SGlFKUaBVLMmgWR0CknmKMFUyYdX2UKGgGaAloD0MIuYswRbm057+UhpRSlGgVSzJoFkdApJ4nkLhJiHV9lChoBmgJaA9DCGWLpN3oI/i/lIaUUpRoFUsyaBZHQKSd6YZVGTd1fZQoaAZoCWgPQwisOxbbpCLwv5SGlFKUaBVLMmgWR0Ckn63Dm8ujdX2UKGgGaAloD0MIE2ba/pWV8L+UhpRSlGgVSzJoFkdApJ9zZUT+N3V9lChoBmgJaA9DCErs2t5uyeu/lIaUUpRoFUsyaBZHQKSfOHSnccl1fZQoaAZoCWgPQwhh4Ln3cMnqv5SGlFKUaBVLMmgWR0Cknvp7CzkZdX2UKGgGaAloD0MIuoEC7+TT/b+UhpRSlGgVSzJoFkdApKDONzbN8nV9lChoBmgJaA9DCO8fC9EhMPq/lIaUUpRoFUsyaBZHQKSgk96kZaV1fZQoaAZoCWgPQwg8hPHTuDfcv5SGlFKUaBVLMmgWR0CkoFjzZpSKdX2UKGgGaAloD0MIhleSPNd37r+UhpRSlGgVSzJoFkdApKAbBRAKOXV9lChoBmgJaA9DCFtgj4mUpvu/lIaUUpRoFUsyaBZHQKSh4Xv6TGJ1fZQoaAZoCWgPQwj+0qI+yZ3mv5SGlFKUaBVLMmgWR0CkoacoH9m6dX2UKGgGaAloD0MIsdtnlZmS8b+UhpRSlGgVSzJoFkdApKFsRODaoXV9lChoBmgJaA9DCBzvjozV5u6/lIaUUpRoFUsyaBZHQKShLjfek591fZQoaAZoCWgPQwhI/fUKC+7nv5SGlFKUaBVLMmgWR0CkovqmCROldX2UKGgGaAloD0MIOIO/X8yW+b+UhpRSlGgVSzJoFkdApKLASJ0nxHV9lChoBmgJaA9DCB7FOerouOW/lIaUUpRoFUsyaBZHQKSihWGRFJB1fZQoaAZoCWgPQwhB8Pj2roH5v5SGlFKUaBVLMmgWR0CkokdRR/EwdX2UKGgGaAloD0MIxvfFpSpt77+UhpRSlGgVSzJoFkdApKQRuyeI23V9lChoBmgJaA9DCFvTvOMU3f6/lIaUUpRoFUsyaBZHQKSj13j+7191fZQoaAZoCWgPQwgyPPazWEr/v5SGlFKUaBVLMmgWR0Cko5ydvsJIdX2UKGgGaAloD0MIOq5GdqWl/L+UhpRSlGgVSzJoFkdApKNeotL+P3V9lChoBmgJaA9DCNWVz/I8uPS/lIaUUpRoFUsyaBZHQKSlQjua4MF1fZQoaAZoCWgPQwjp0VRP5l/3v5SGlFKUaBVLMmgWR0CkpQfc32mIdX2UKGgGaAloD0MIQ/8EFysq9b+UhpRSlGgVSzJoFkdApKTNB2OhkHV9lChoBmgJaA9DCBPyQc9mVfC/lIaUUpRoFUsyaBZHQKSkjw5NoJ11fZQoaAZoCWgPQwgUeCefHpvzv5SGlFKUaBVLMmgWR0CkplYvvjOtdX2UKGgGaAloD0MIr1xvm6kQ+L+UhpRSlGgVSzJoFkdApKYbyBkI5nV9lChoBmgJaA9DCP5hS4+mWgHAlIaUUpRoFUsyaBZHQKSl4L0jC551fZQoaAZoCWgPQwhkc9U8RyT3v5SGlFKUaBVLMmgWR0CkpaKsMiKSdX2UKGgGaAloD0MId0zdlV0w+7+UhpRSlGgVSzJoFkdApKdrsMRYinV9lChoBmgJaA9DCC3qk9xh0/i/lIaUUpRoFUsyaBZHQKSnMY64lQd1fZQoaAZoCWgPQwhYkjzX92Hov5SGlFKUaBVLMmgWR0CkpvbQ1JlKdX2UKGgGaAloD0MItU/HYwaq/L+UhpRSlGgVSzJoFkdApKa411nuiXV9lChoBmgJaA9DCDUIc7uXewXAlIaUUpRoFUsyaBZHQKSoiAxSHdp1fZQoaAZoCWgPQwh39wDdl3P8v5SGlFKUaBVLMmgWR0CkqE4Fiay9dX2UKGgGaAloD0MIOleUEoKVAsCUhpRSlGgVSzJoFkdApKgTPBzmwXV9lChoBmgJaA9DCJkMx/MZUO2/lIaUUpRoFUsyaBZHQKSn1U6xPft1fZQoaAZoCWgPQwjsbTMV4lH1v5SGlFKUaBVLMmgWR0CkqZ6Rhc7hdX2UKGgGaAloD0MIcCL6tfUT+b+UhpRSlGgVSzJoFkdApKlkRradtnV9lChoBmgJaA9DCNgMcEG2rPS/lIaUUpRoFUsyaBZHQKSpKWfseGR1fZQoaAZoCWgPQwj/l2vRAjT2v5SGlFKUaBVLMmgWR0CkqOtjLB9DdX2UKGgGaAloD0MI+l+uRQtwAcCUhpRSlGgVSzJoFkdApKrFBdD6WXV9lChoBmgJaA9DCDhnRGlv8PS/lIaUUpRoFUsyaBZHQKSqirXlKbt1fZQoaAZoCWgPQwinBprPubsBwJSGlFKUaBVLMmgWR0Ckqk/BWPtEdX2UKGgGaAloD0MIhhvw+WHE9L+UhpRSlGgVSzJoFkdApKoR1ie/YnV9lChoBmgJaA9DCMDo8uZwrfK/lIaUUpRoFUsyaBZHQKSr3KMefZp1fZQoaAZoCWgPQwiuYYbGE0Hnv5SGlFKUaBVLMmgWR0Ckq6Jo0ygxdX2UKGgGaAloD0MI8UbmkT+Y/L+UhpRSlGgVSzJoFkdApKtngWJrL3V9lChoBmgJaA9DCDLH8q56QOq/lIaUUpRoFUsyaBZHQKSrKXN1QqJ1fZQoaAZoCWgPQwhINez3xFoDwJSGlFKUaBVLMmgWR0CkrPByS3b3dX2UKGgGaAloD0MIERssnKR54L+UhpRSlGgVSzJoFkdApKy2E25xznV9lChoBmgJaA9DCMqoMoy7wfK/lIaUUpRoFUsyaBZHQKSsewgTyrh1fZQoaAZoCWgPQwikxoSYS2r2v5SGlFKUaBVLMmgWR0CkrDzsyBTXdX2UKGgGaAloD0MIsvZ3tkcv/L+UhpRSlGgVSzJoFkdApK4BWLgn+nV9lChoBmgJaA9DCE4MycnEbQDAlIaUUpRoFUsyaBZHQKStxwvQF9t1fZQoaAZoCWgPQwh7FoTyPk79v5SGlFKUaBVLMmgWR0CkrYv91loUdX2UKGgGaAloD0MIzlMdcjPc+L+UhpRSlGgVSzJoFkdApK1N6u4gBHV9lChoBmgJaA9DCOUMxR1v0gLAlIaUUpRoFUsyaBZHQKSvGwaisXB1fZQoaAZoCWgPQwhHBU62gVsDwJSGlFKUaBVLMmgWR0CkruCB5HEudX2UKGgGaAloD0MIs3vysFAr+7+UhpRSlGgVSzJoFkdApK6lzltCRnV9lChoBmgJaA9DCIqtoGmJFfO/lIaUUpRoFUsyaBZHQKSuZ/vOQhh1fZQoaAZoCWgPQwjRWWYRii3uv5SGlFKUaBVLMmgWR0CksFlVcUuddX2UKGgGaAloD0MI4sgDkUVa9L+UhpRSlGgVSzJoFkdApLAfu5SWJXV9lChoBmgJaA9DCAOxbOaQtArAlIaUUpRoFUsyaBZHQKSv5LM9r451fZQoaAZoCWgPQwhjX7LxYKsAwJSGlFKUaBVLMmgWR0Ckr6bDVH4HdX2UKGgGaAloD0MIkWKARBPo97+UhpRSlGgVSzJoFkdApLF3M2WIGnV9lChoBmgJaA9DCHCVJxB2Cu2/lIaUUpRoFUsyaBZHQKSxPMEidJ91fZQoaAZoCWgPQwijA5Kwb6fuv5SGlFKUaBVLMmgWR0CksQHQY1pCdX2UKGgGaAloD0MIamtEMA6u47+UhpRSlGgVSzJoFkdApLDDyxzJZHV9lChoBmgJaA9DCJrOTgZHCfK/lIaUUpRoFUsyaBZHQKSyjLkjopx1fZQoaAZoCWgPQwihgy7h0BsBwJSGlFKUaBVLMmgWR0CkslJv5xiodX2UKGgGaAloD0MIotXJGYq78r+UhpRSlGgVSzJoFkdApLIXlEJBxHV9lChoBmgJaA9DCA1yF2GKcua/lIaUUpRoFUsyaBZHQKSx2YyfthN1fZQoaAZoCWgPQwgwZeCAli71v5SGlFKUaBVLMmgWR0Cks6BKlHjIdX2UKGgGaAloD0MIkfC9v0G787+UhpRSlGgVSzJoFkdApLNluHerMnV9lChoBmgJaA9DCNdqD3uhgADAlIaUUpRoFUsyaBZHQKSzKsEq2Bt1fZQoaAZoCWgPQwj356Ih4xH4v5SGlFKUaBVLMmgWR0Cksuy6DoQndX2UKGgGaAloD0MIWFNZFHYR+L+UhpRSlGgVSzJoFkdApLSp2Qnx8XV9lChoBmgJaA9DCH+HokCfSADAlIaUUpRoFUsyaBZHQKS0cRoRIz51fZQoaAZoCWgPQwjx8QnZeZv1v5SGlFKUaBVLMmgWR0CktDbZFocrdX2UKGgGaAloD0MIA3l2+dYH8r+UhpRSlGgVSzJoFkdApLP5SeiBXnV9lChoBmgJaA9DCDigpSvYxgDAlIaUUpRoFUsyaBZHQKS1w3PRiPR1fZQoaAZoCWgPQwgPtAJDVrf8v5SGlFKUaBVLMmgWR0CktYko4MnadX2UKGgGaAloD0MIxCXHndKB8r+UhpRSlGgVSzJoFkdApLVOU6gdwXV9lChoBmgJaA9DCK2Imujz0ey/lIaUUpRoFUsyaBZHQKS1EFQEZBN1fZQoaAZoCWgPQwitF0M50S7vv5SGlFKUaBVLMmgWR0CktuE43m3fdX2UKGgGaAloD0MImwMEc/T477+UhpRSlGgVSzJoFkdApLam40/GEXV9lChoBmgJaA9DCO5e7pOjwPe/lIaUUpRoFUsyaBZHQKS2a+2VmjF1fZQoaAZoCWgPQwhpOGVuvlHyv5SGlFKUaBVLMmgWR0Ckti30wrUcdX2UKGgGaAloD0MI/mX35GEh77+UhpRSlGgVSzJoFkdApLf7YywfQ3V9lChoBmgJaA9DCIXukjgrAgLAlIaUUpRoFUsyaBZHQKS3wPMjeKt1fZQoaAZoCWgPQwhHdxA7U2jnv5SGlFKUaBVLMmgWR0Ckt4Xj2i+MdX2UKGgGaAloD0MIFK+ytike6b+UhpRSlGgVSzJoFkdApLdH49HMEHV9lChoBmgJaA9DCKlKW1zjc/6/lIaUUpRoFUsyaBZHQKS5IzPa+N91fZQoaAZoCWgPQwj4UKIlj+f6v5SGlFKUaBVLMmgWR0CkuOjzI3irdX2UKGgGaAloD0MIUOJzJ9ifBcCUhpRSlGgVSzJoFkdApLiuNedCmnV9lChoBmgJaA9DCD3UtmEUBOe/lIaUUpRoFUsyaBZHQKS4cCfYjB51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af25432e83712a1f699c29b623e13aa4912b40a600a7a2fcd645d4822512356d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90eee57178b9d65f9ca0d20bb8401ebe7fc5a16205c26c30f18c785acb31586a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efd430284c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd43029150>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674424298720132874, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAArqDdPuofiLza9gs/rqDdPuofiLza9gs/rqDdPuofiLza9gs/rqDdPuofiLza9gs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGW7JPh8kDD/29AM/S4+vPgqeEb9EK7S/VaGTveXjnL8/V9k/nH/BP/5hyL+8zLq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuuoN0+6h+IvNr2Cz9B6408LA8mu0sSiDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]\n [ 0.4328665 -0.01661678 0.5467354 ]]", "desired_goal": "[[ 0.3934181 0.54742616 0.51545656]\n [ 0.3428901 -0.56881773 -1.4075704 ]\n [-0.07208506 -1.2257048 1.697975 ]\n [ 1.5117068 -1.5654905 -1.459373 ]]", "observation": "[[ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]\n [ 0.4328665 -0.01661678 0.5467354 0.01732409 -0.00253386 0.00415257]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhJwCvB3D7LsLjuo9zf8GvnbyNr3gR5Q91w+KPD7et7w5HFI9tJXFvcRZDT4FbdQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00797189 -0.00722541 0.11452874]\n [-0.13183518 -0.04466482 0.07240272]\n [ 0.01685326 -0.02244484 0.05129645]\n [-0.09647694 0.13803774 0.10372356]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInmLVIMzt3b+UhpRSlIwBbJRLMowBdJRHQKSenI8yN4t1fZQoaAZoCWgPQwiM17yqs9rvv5SGlFKUaBVLMmgWR0CknmKMFUyYdX2UKGgGaAloD0MIuYswRbm057+UhpRSlGgVSzJoFkdApJ4nkLhJiHV9lChoBmgJaA9DCGWLpN3oI/i/lIaUUpRoFUsyaBZHQKSd6YZVGTd1fZQoaAZoCWgPQwisOxbbpCLwv5SGlFKUaBVLMmgWR0Ckn63Dm8ujdX2UKGgGaAloD0MIE2ba/pWV8L+UhpRSlGgVSzJoFkdApJ9zZUT+N3V9lChoBmgJaA9DCErs2t5uyeu/lIaUUpRoFUsyaBZHQKSfOHSnccl1fZQoaAZoCWgPQwhh4Ln3cMnqv5SGlFKUaBVLMmgWR0Cknvp7CzkZdX2UKGgGaAloD0MIuoEC7+TT/b+UhpRSlGgVSzJoFkdApKDONzbN8nV9lChoBmgJaA9DCO8fC9EhMPq/lIaUUpRoFUsyaBZHQKSgk96kZaV1fZQoaAZoCWgPQwg8hPHTuDfcv5SGlFKUaBVLMmgWR0CkoFjzZpSKdX2UKGgGaAloD0MIhleSPNd37r+UhpRSlGgVSzJoFkdApKAbBRAKOXV9lChoBmgJaA9DCFtgj4mUpvu/lIaUUpRoFUsyaBZHQKSh4Xv6TGJ1fZQoaAZoCWgPQwj+0qI+yZ3mv5SGlFKUaBVLMmgWR0CkoacoH9m6dX2UKGgGaAloD0MIsdtnlZmS8b+UhpRSlGgVSzJoFkdApKFsRODaoXV9lChoBmgJaA9DCBzvjozV5u6/lIaUUpRoFUsyaBZHQKShLjfek591fZQoaAZoCWgPQwhI/fUKC+7nv5SGlFKUaBVLMmgWR0CkovqmCROldX2UKGgGaAloD0MIOIO/X8yW+b+UhpRSlGgVSzJoFkdApKLASJ0nxHV9lChoBmgJaA9DCB7FOerouOW/lIaUUpRoFUsyaBZHQKSihWGRFJB1fZQoaAZoCWgPQwhB8Pj2roH5v5SGlFKUaBVLMmgWR0CkokdRR/EwdX2UKGgGaAloD0MIxvfFpSpt77+UhpRSlGgVSzJoFkdApKQRuyeI23V9lChoBmgJaA9DCFvTvOMU3f6/lIaUUpRoFUsyaBZHQKSj13j+7191fZQoaAZoCWgPQwgyPPazWEr/v5SGlFKUaBVLMmgWR0Cko5ydvsJIdX2UKGgGaAloD0MIOq5GdqWl/L+UhpRSlGgVSzJoFkdApKNeotL+P3V9lChoBmgJaA9DCNWVz/I8uPS/lIaUUpRoFUsyaBZHQKSlQjua4MF1fZQoaAZoCWgPQwjp0VRP5l/3v5SGlFKUaBVLMmgWR0CkpQfc32mIdX2UKGgGaAloD0MIQ/8EFysq9b+UhpRSlGgVSzJoFkdApKTNB2OhkHV9lChoBmgJaA9DCBPyQc9mVfC/lIaUUpRoFUsyaBZHQKSkjw5NoJ11fZQoaAZoCWgPQwgUeCefHpvzv5SGlFKUaBVLMmgWR0CkplYvvjOtdX2UKGgGaAloD0MIr1xvm6kQ+L+UhpRSlGgVSzJoFkdApKYbyBkI5nV9lChoBmgJaA9DCP5hS4+mWgHAlIaUUpRoFUsyaBZHQKSl4L0jC551fZQoaAZoCWgPQwhkc9U8RyT3v5SGlFKUaBVLMmgWR0CkpaKsMiKSdX2UKGgGaAloD0MId0zdlV0w+7+UhpRSlGgVSzJoFkdApKdrsMRYinV9lChoBmgJaA9DCC3qk9xh0/i/lIaUUpRoFUsyaBZHQKSnMY64lQd1fZQoaAZoCWgPQwhYkjzX92Hov5SGlFKUaBVLMmgWR0CkpvbQ1JlKdX2UKGgGaAloD0MItU/HYwaq/L+UhpRSlGgVSzJoFkdApKa411nuiXV9lChoBmgJaA9DCDUIc7uXewXAlIaUUpRoFUsyaBZHQKSoiAxSHdp1fZQoaAZoCWgPQwh39wDdl3P8v5SGlFKUaBVLMmgWR0CkqE4Fiay9dX2UKGgGaAloD0MIOleUEoKVAsCUhpRSlGgVSzJoFkdApKgTPBzmwXV9lChoBmgJaA9DCJkMx/MZUO2/lIaUUpRoFUsyaBZHQKSn1U6xPft1fZQoaAZoCWgPQwjsbTMV4lH1v5SGlFKUaBVLMmgWR0CkqZ6Rhc7hdX2UKGgGaAloD0MIcCL6tfUT+b+UhpRSlGgVSzJoFkdApKlkRradtnV9lChoBmgJaA9DCNgMcEG2rPS/lIaUUpRoFUsyaBZHQKSpKWfseGR1fZQoaAZoCWgPQwj/l2vRAjT2v5SGlFKUaBVLMmgWR0CkqOtjLB9DdX2UKGgGaAloD0MI+l+uRQtwAcCUhpRSlGgVSzJoFkdApKrFBdD6WXV9lChoBmgJaA9DCDhnRGlv8PS/lIaUUpRoFUsyaBZHQKSqirXlKbt1fZQoaAZoCWgPQwinBprPubsBwJSGlFKUaBVLMmgWR0Ckqk/BWPtEdX2UKGgGaAloD0MIhhvw+WHE9L+UhpRSlGgVSzJoFkdApKoR1ie/YnV9lChoBmgJaA9DCMDo8uZwrfK/lIaUUpRoFUsyaBZHQKSr3KMefZp1fZQoaAZoCWgPQwiuYYbGE0Hnv5SGlFKUaBVLMmgWR0Ckq6Jo0ygxdX2UKGgGaAloD0MI8UbmkT+Y/L+UhpRSlGgVSzJoFkdApKtngWJrL3V9lChoBmgJaA9DCDLH8q56QOq/lIaUUpRoFUsyaBZHQKSrKXN1QqJ1fZQoaAZoCWgPQwhINez3xFoDwJSGlFKUaBVLMmgWR0CkrPByS3b3dX2UKGgGaAloD0MIERssnKR54L+UhpRSlGgVSzJoFkdApKy2E25xznV9lChoBmgJaA9DCMqoMoy7wfK/lIaUUpRoFUsyaBZHQKSsewgTyrh1fZQoaAZoCWgPQwikxoSYS2r2v5SGlFKUaBVLMmgWR0CkrDzsyBTXdX2UKGgGaAloD0MIsvZ3tkcv/L+UhpRSlGgVSzJoFkdApK4BWLgn+nV9lChoBmgJaA9DCE4MycnEbQDAlIaUUpRoFUsyaBZHQKStxwvQF9t1fZQoaAZoCWgPQwh7FoTyPk79v5SGlFKUaBVLMmgWR0CkrYv91loUdX2UKGgGaAloD0MIzlMdcjPc+L+UhpRSlGgVSzJoFkdApK1N6u4gBHV9lChoBmgJaA9DCOUMxR1v0gLAlIaUUpRoFUsyaBZHQKSvGwaisXB1fZQoaAZoCWgPQwhHBU62gVsDwJSGlFKUaBVLMmgWR0CkruCB5HEudX2UKGgGaAloD0MIs3vysFAr+7+UhpRSlGgVSzJoFkdApK6lzltCRnV9lChoBmgJaA9DCIqtoGmJFfO/lIaUUpRoFUsyaBZHQKSuZ/vOQhh1fZQoaAZoCWgPQwjRWWYRii3uv5SGlFKUaBVLMmgWR0CksFlVcUuddX2UKGgGaAloD0MI4sgDkUVa9L+UhpRSlGgVSzJoFkdApLAfu5SWJXV9lChoBmgJaA9DCAOxbOaQtArAlIaUUpRoFUsyaBZHQKSv5LM9r451fZQoaAZoCWgPQwhjX7LxYKsAwJSGlFKUaBVLMmgWR0Ckr6bDVH4HdX2UKGgGaAloD0MIkWKARBPo97+UhpRSlGgVSzJoFkdApLF3M2WIGnV9lChoBmgJaA9DCHCVJxB2Cu2/lIaUUpRoFUsyaBZHQKSxPMEidJ91fZQoaAZoCWgPQwijA5Kwb6fuv5SGlFKUaBVLMmgWR0CksQHQY1pCdX2UKGgGaAloD0MIamtEMA6u47+UhpRSlGgVSzJoFkdApLDDyxzJZHV9lChoBmgJaA9DCJrOTgZHCfK/lIaUUpRoFUsyaBZHQKSyjLkjopx1fZQoaAZoCWgPQwihgy7h0BsBwJSGlFKUaBVLMmgWR0CkslJv5xiodX2UKGgGaAloD0MIotXJGYq78r+UhpRSlGgVSzJoFkdApLIXlEJBxHV9lChoBmgJaA9DCA1yF2GKcua/lIaUUpRoFUsyaBZHQKSx2YyfthN1fZQoaAZoCWgPQwgwZeCAli71v5SGlFKUaBVLMmgWR0Cks6BKlHjIdX2UKGgGaAloD0MIkfC9v0G787+UhpRSlGgVSzJoFkdApLNluHerMnV9lChoBmgJaA9DCNdqD3uhgADAlIaUUpRoFUsyaBZHQKSzKsEq2Bt1fZQoaAZoCWgPQwj356Ih4xH4v5SGlFKUaBVLMmgWR0Cksuy6DoQndX2UKGgGaAloD0MIWFNZFHYR+L+UhpRSlGgVSzJoFkdApLSp2Qnx8XV9lChoBmgJaA9DCH+HokCfSADAlIaUUpRoFUsyaBZHQKS0cRoRIz51fZQoaAZoCWgPQwjx8QnZeZv1v5SGlFKUaBVLMmgWR0CktDbZFocrdX2UKGgGaAloD0MIA3l2+dYH8r+UhpRSlGgVSzJoFkdApLP5SeiBXnV9lChoBmgJaA9DCDigpSvYxgDAlIaUUpRoFUsyaBZHQKS1w3PRiPR1fZQoaAZoCWgPQwgPtAJDVrf8v5SGlFKUaBVLMmgWR0CktYko4MnadX2UKGgGaAloD0MIxCXHndKB8r+UhpRSlGgVSzJoFkdApLVOU6gdwXV9lChoBmgJaA9DCK2Imujz0ey/lIaUUpRoFUsyaBZHQKS1EFQEZBN1fZQoaAZoCWgPQwitF0M50S7vv5SGlFKUaBVLMmgWR0CktuE43m3fdX2UKGgGaAloD0MImwMEc/T477+UhpRSlGgVSzJoFkdApLam40/GEXV9lChoBmgJaA9DCO5e7pOjwPe/lIaUUpRoFUsyaBZHQKS2a+2VmjF1fZQoaAZoCWgPQwhpOGVuvlHyv5SGlFKUaBVLMmgWR0Ckti30wrUcdX2UKGgGaAloD0MI/mX35GEh77+UhpRSlGgVSzJoFkdApLf7YywfQ3V9lChoBmgJaA9DCIXukjgrAgLAlIaUUpRoFUsyaBZHQKS3wPMjeKt1fZQoaAZoCWgPQwhHdxA7U2jnv5SGlFKUaBVLMmgWR0Ckt4Xj2i+MdX2UKGgGaAloD0MIFK+ytike6b+UhpRSlGgVSzJoFkdApLdH49HMEHV9lChoBmgJaA9DCKlKW1zjc/6/lIaUUpRoFUsyaBZHQKS5IzPa+N91fZQoaAZoCWgPQwj4UKIlj+f6v5SGlFKUaBVLMmgWR0CkuOjzI3irdX2UKGgGaAloD0MIUOJzJ9ifBcCUhpRSlGgVSzJoFkdApLiuNedCmnV9lChoBmgJaA9DCD3UtmEUBOe/lIaUUpRoFUsyaBZHQKS4cCfYjB51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (387 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.3534190086647868, "std_reward": 0.635331019319449, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T22:45:49.134183"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6339ee6126c8717dfab29a2a28cb4f632190b8ebf665096d2d3ba923b971b223
3
+ size 3056