nielsr HF staff commited on
Commit
273ff55
1 Parent(s): b0f9866

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -20
README.md CHANGED
@@ -21,16 +21,16 @@ model-index:
21
  metrics:
22
  - name: Precision
23
  type: precision
24
- value: 0.9190581309786607
25
  - name: Recall
26
  type: recall
27
- value: 0.9348802395209581
28
  - name: F1
29
  type: f1
30
- value: 0.9269016697588126
31
  - name: Accuracy
32
  type: accuracy
33
- value: 0.9384550084889643
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.3056
44
- - Precision: 0.9191
45
- - Recall: 0.9349
46
- - F1: 0.9269
47
- - Accuracy: 0.9385
48
 
49
  ## Model description
50
 
@@ -63,7 +63,7 @@ More information needed
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
- - learning_rate: 1e-05
67
  - train_batch_size: 16
68
  - eval_batch_size: 16
69
  - seed: 42
@@ -75,16 +75,16 @@ The following hyperparameters were used during training:
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
- | No log | 2.0 | 100 | 1.6054 | 0.52 | 0.6130 | 0.5627 | 0.6367 |
79
- | No log | 4.0 | 200 | 0.9172 | 0.7923 | 0.8278 | 0.8097 | 0.8315 |
80
- | No log | 6.0 | 300 | 0.6382 | 0.8367 | 0.8630 | 0.8497 | 0.8667 |
81
- | No log | 8.0 | 400 | 0.4974 | 0.8648 | 0.8907 | 0.8776 | 0.8960 |
82
- | 1.1589 | 10.0 | 500 | 0.4124 | 0.8769 | 0.9064 | 0.8914 | 0.9164 |
83
- | 1.1589 | 12.0 | 600 | 0.3767 | 0.8961 | 0.9169 | 0.9064 | 0.9236 |
84
- | 1.1589 | 14.0 | 700 | 0.3388 | 0.9120 | 0.9304 | 0.9211 | 0.9338 |
85
- | 1.1589 | 16.0 | 800 | 0.3138 | 0.9198 | 0.9356 | 0.9276 | 0.9393 |
86
- | 1.1589 | 18.0 | 900 | 0.3073 | 0.9176 | 0.9334 | 0.9254 | 0.9376 |
87
- | 0.2992 | 20.0 | 1000 | 0.3056 | 0.9191 | 0.9349 | 0.9269 | 0.9385 |
88
 
89
 
90
  ### Framework versions
 
21
  metrics:
22
  - name: Precision
23
  type: precision
24
+ value: 0.9619686800894854
25
  - name: Recall
26
  type: recall
27
+ value: 0.9655688622754491
28
  - name: F1
29
  type: f1
30
+ value: 0.9637654090399701
31
  - name: Accuracy
32
  type: accuracy
33
+ value: 0.9681663837011885
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.1845
44
+ - Precision: 0.9620
45
+ - Recall: 0.9656
46
+ - F1: 0.9638
47
+ - Accuracy: 0.9682
48
 
49
  ## Model description
50
 
 
63
  ### Training hyperparameters
64
 
65
  The following hyperparameters were used during training:
66
+ - learning_rate: 5e-05
67
  - train_batch_size: 16
68
  - eval_batch_size: 16
69
  - seed: 42
 
75
 
76
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 2.0 | 100 | 0.5257 | 0.8223 | 0.8555 | 0.8386 | 0.8710 |
79
+ | No log | 4.0 | 200 | 0.3200 | 0.9118 | 0.9281 | 0.9199 | 0.9317 |
80
+ | No log | 6.0 | 300 | 0.2449 | 0.9298 | 0.9424 | 0.9361 | 0.9465 |
81
+ | No log | 8.0 | 400 | 0.1923 | 0.9472 | 0.9536 | 0.9504 | 0.9597 |
82
+ | 0.4328 | 10.0 | 500 | 0.1857 | 0.9591 | 0.9656 | 0.9623 | 0.9682 |
83
+ | 0.4328 | 12.0 | 600 | 0.2073 | 0.9597 | 0.9618 | 0.9607 | 0.9656 |
84
+ | 0.4328 | 14.0 | 700 | 0.1804 | 0.9634 | 0.9663 | 0.9649 | 0.9703 |
85
+ | 0.4328 | 16.0 | 800 | 0.1882 | 0.9634 | 0.9648 | 0.9641 | 0.9665 |
86
+ | 0.4328 | 18.0 | 900 | 0.1800 | 0.9619 | 0.9648 | 0.9634 | 0.9677 |
87
+ | 0.0318 | 20.0 | 1000 | 0.1845 | 0.9620 | 0.9656 | 0.9638 | 0.9682 |
88
 
89
 
90
  ### Framework versions