File size: 1,954 Bytes
04d6513
 
 
 
 
6831d3c
04d6513
 
3a6da81
04d6513
 
 
 
 
3a6da81
04d6513
6831d3c
 
 
04d6513
3a6da81
6831d3c
3a6da81
04d6513
 
 
 
 
 
 
6831d3c
04d6513
6831d3c
 
04d6513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831d3c
 
 
04d6513
 
 
 
6831d3c
04d6513
6831d3c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: vit-base-patch16-224-in21k-finetuned-cifar10
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: image_folder
      type: image_folder
      args: default
    metrics:
    - type: accuracy
      value: 0.9881481481481481
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch16-224-in21k-finetuned-cifar10

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1357
- Accuracy: 0.9881

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2455        | 1.0   | 190  | 0.2227          | 0.9830   |
| 0.1363        | 2.0   | 380  | 0.1357          | 0.9881   |
| 0.0954        | 3.0   | 570  | 0.1194          | 0.9878   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6