nikbhi commited on
Commit
8b54747
1 Parent(s): a2b4c8f

improved model with better neural network

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 279.69 +/- 9.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5cae2cdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5cae2ce50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5cae2cee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5cae2cf70>", "_build": "<function ActorCriticPolicy._build at 0x7fd5cae2d000>", "forward": "<function ActorCriticPolicy.forward at 0x7fd5cae2d090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5cae2d120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5cae2d1b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd5cae2d240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5cae2d2d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5cae2d360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5cae2d3f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd5cae22480>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [128, 128, 128, 128], "vf": [128, 128, 128, 128]}]}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690643045613043468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKAzC76efpQ96HpfPtEOdr4nXvM9+j1FPQAAAAAAAAAATVAWPeE86rrbIhW8mtPRO8s3Ljzw98G8AACAPwAAgD/N4h099rwcumb5ezfUbxgztqe2OxOEkrYAAIA/AACAP3MMwz2UD4I9tntBviaRj74saKa9VnNKPQAAAAAAAAAAcw6oPVRCtj92qzM/9CujvQTGY7uqcDA+AAAAAAAAAADt90U+2P6XPpaMzb7SreC+lcMCvrkUJ70AAAAAAAAAAAAexjzKNhw/Kd+Nu2PPIr/GUBI9Stb8vAAAAAAAAAAAwEEfPs8RSbzi5KA7C9gjutdsr70ftAC7AACAPwAAgD8NpsA9XCNSuou/YjOV7xwsYi8JOpebq7MAAIA/AACAPwCFB76Fg9a7xDUrvDZ7u7rABSo9xw+hOwAAgD8AAIA/AA+IPcMJULrgpPI05uksr7QK3rqGbVS0AACAPwAAgD96Pz6+zys8PrrbNz4/0Ja+46T1vWIZED4AAAAAAAAAAHO0/73u/+89ShFZPhndR77VYEc9x8M7OwAAAAAAAAAAWk6BvV0lsj9vYaC+huCLvvPdDL397Ti+AAAAAAAAAADC6q++8djxPlNVUb3QIzK/oEIMv/2mdTwAAAAAAAAAAOZDob1JZS09ShI7PksNKL7Ch7Y8TCGSOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4prWy1NQGMAWyUS4eMAXSUR0CiAapZGKAKdX2UKGgGR0BHASIgvDgqaAdLXmgIR0CiAdsgU1yedX2UKGgGR0BxwlQSBbwCaAdL4mgIR0CiAf80UGmldX2UKGgGR0BxWbfAKv3baAdLrWgIR0CiAjGwJPZadX2UKGgGR0BxQzg5zYEoaAdLv2gIR0CiAl8dPtUodX2UKGgGR0Bx4abwz+FUaAdLxWgIR0CiAsTN+so2dX2UKGgGR0B0SzuG9HtnaAdL32gIR0CiAulBppN9dX2UKGgGR0BFn0E5hjOLaAdLemgIR0CiAvE/r0J4dX2UKGgGR0ByByHFglWwaAdL7GgIR0CiA0YQJ5VwdX2UKGgGR0Bw7ysJY1YRaAdLvmgIR0CiA1aSLZSOdX2UKGgGR0BxDo4KhL5AaAdLomgIR0CiA6BHLA58dX2UKGgGR0BxvJHqeK8+aAdLsWgIR0CiA/F8G9pRdX2UKGgGR0BxWecvugHvaAdLuWgIR0CiBELftQbddX2UKGgGR0Bw8CAwwj+raAdLxGgIR0CiBE1C5VfedX2UKGgGR0ByNFimVJL/aAdL72gIR0CiBFm7BfrsdX2UKGgGR0ByvM81XNkfaAdL6mgIR0CiBPeHaewtdX2UKGgGR0Bx9jjDKoycaAdLx2gIR0CiBRWQXAM2dX2UKGgGR0ByP2t1ZDAraAdL5GgIR0CiBWCay8jBdX2UKGgGR0Bxv9/QSi/PaAdL0GgIR0CiBV05U96kdX2UKGgGR0BxknPeHi3oaAdLtmgIR0CiBW8Zk079dX2UKGgGR0Bvqe+M6zVuaAdLrGgIR0CiBaVYZEUkdX2UKGgGR0ByCI3bVSXMaAdL2mgIR0CiBfcinpB5dX2UKGgGR0ByImoUBXCCaAdLvmgIR0CiBgBo/RmcdX2UKGgGR0BxA3Y150KaaAdL8mgIR0CiBjV7pmmMdX2UKGgGR0BxVJmz0HyFaAdLwmgIR0CiBm5/b0vodX2UKGgGR0BxqMS+QEIPaAdLjWgIR0CiByFG5MDfdX2UKGgGR0ByHGbqhUR4aAdLy2gIR0CiB1DvE0iydX2UKGgGR0Bx4tWFN+LFaAdL72gIR0CiB4l4C6pYdX2UKGgGR0Bw6JaC+UQkaAdL1GgIR0CiB5WDYh+wdX2UKGgGR0BxozVc2R7raAdLqWgIR0CiCAWCmMwUdX2UKGgGR0BxoByR0U48aAdLwmgIR0CiCCEFwDNhdX2UKGgGR0BxOV4TsY2saAdLyGgIR0CiCIDp1RtQdX2UKGgGR0BxM+yAxzq9aAdLyGgIR0CiCJQztTkydX2UKGgGR0Bw/HKNhmXgaAdNFwFoCEdAogiX40uUU3V9lChoBkdAcimT9KmKqGgHS9loCEdAogkHcHnln3V9lChoBkdAc8RD6WPcSGgHS8hoCEdAogkfwVj7RHV9lChoBkdAcWl1fVqesmgHS65oCEdAogkoood+5XV9lChoBkdAcI/8iOearmgHS89oCEdAogkxjFyaNXV9lChoBkdAcrXZ75VOsWgHS9RoCEdAogmBpDeCTXV9lChoBkdAcHqXOnl4kmgHS5hoCEdAognhFNL13HV9lChoBkdAcjmRvm5lOGgHS7xoCEdAogoQjnmq53V9lChoBkdAca9mu1WsBGgHS8hoCEdAogpvoNd7fHV9lChoBkdAcP8r2g398GgHS6BoCEdAogp9Nvfj0nV9lChoBkdAcSCVPepGWmgHS8poCEdAogq1urIYFnV9lChoBkdAcNeTVUdaMmgHS7FoCEdAogrb3Ehq03V9lChoBkdAciY3sXzlLmgHS6ZoCEdAogsM7hegMHV9lChoBkdAcs2FXaJyhmgHS6toCEdAogs0wztTk3V9lChoBkdAU5dWzWwu/WgHS5JoCEdAogvZMSK3u3V9lChoBkdAcMpKdhAnlWgHS7RoCEdAogvhYYBNmHV9lChoBkdAcjPxgiNbT2gHS8doCEdAogxcy8BdU3V9lChoBkdAb3xoX9BKMGgHS6hoCEdAogybgEU0vXV9lChoBkdAcfJB0IToMmgHS9loCEdAogygLiMo+nV9lChoBkdAcpL0P6KtP2gHS+BoCEdAogyzjLjgh3V9lChoBkdAcxIXcQAdXGgHTQUBaAhHQKIMuJbdJrd1fZQoaAZHQG7k+jua4MFoB0upaAhHQKIN4rNGEwp1fZQoaAZHQHQ732qT8pFoB0u4aAhHQKIN7fiPyTZ1fZQoaAZHQHDUCEYfnwJoB0vCaAhHQKIN8JLM9r51fZQoaAZHQHLZjUiILw5oB0vXaAhHQKIOAtW+49Z1fZQoaAZHQHIu7z5GjKxoB0viaAhHQKIOP4vexfR1fZQoaAZHQHHEB59mYjVoB0u0aAhHQKIOP37DVH51fZQoaAZHQHO21X3g1m9oB00AAWgIR0CiDk6DoQnQdX2UKGgGR0Bv6NXRw6yTaAdLk2gIR0CiDstbkfcOdX2UKGgGR0Bwk0D/2kBTaAdLtWgIR0CiDtwdS2pidX2UKGgGR0BxYJYnv2GqaAdLwGgIR0CiDwHVwxWUdX2UKGgGR0BwKVYJVsDXaAdLmWgIR0CiDxxjJ+2FdX2UKGgGR0BxF49wFTvRaAdLqWgIR0CiD3lz+3pfdX2UKGgGR0BwGLylN1yOaAdLuGgIR0CiD54EfT1DdX2UKGgGR0Bw0L3PAwfyaAdL1GgIR0CiECdxp+MIdX2UKGgGR0ByHDQNTcZcaAdLiGgIR0CiECl4keIVdX2UKGgGR0BykVsMy8BdaAdLqGgIR0CiEJ/c32mIdX2UKGgGR0BwSGWdEsreaAdLvGgIR0CiEPfc32mIdX2UKGgGR0BwmJYjjaPCaAdLs2gIR0CiESEDZDiPdX2UKGgGR0Bjz27e2uxKaAdN6ANoCEdAohF5GnXNDHV9lChoBkdAcydlANXo1WgHS8toCEdAohGceIVM23V9lChoBkdAZS8jSofjj2gHTegDaAhHQKIRpPGACnx1fZQoaAZHQHRq19v0h/1oB0u9aAhHQKISFHEMspZ1fZQoaAZHQHCftfkWAPNoB0vHaAhHQKISFilSCOF1fZQoaAZHQHKK5Grjo6loB0vzaAhHQKISIwsXizd1fZQoaAZHQHEl1zdUKiRoB0ukaAhHQKISIwUQCjl1fZQoaAZHQHGoEYoAn2JoB0t/aAhHQKISMynDR+l1fZQoaAZHQHMjHQID5j9oB0vZaAhHQKISQeyzHCJ1fZQoaAZHQHIg4Ym9g4RoB0u0aAhHQKISb2wmmch1fZQoaAZHQHD68CLdeppoB0veaAhHQKISjL+xW1d1fZQoaAZHQG7R6sQumJpoB0ulaAhHQKISpKmsNlR1fZQoaAZHQHE8lIuoP09oB0uyaAhHQKITb38GcF11fZQoaAZHQHHKBHLA57xoB0vKaAhHQKITfP9DQZ51fZQoaAZHQHEBU1qFh5RoB0uTaAhHQKITjHLidat1fZQoaAZHQHASJ71Iy0toB0ueaAhHQKITjDm8ujB1fZQoaAZHQHAPsHKOktVoB0u1aAhHQKIT/Qla8pV1fZQoaAZHQHG+DHwPRRdoB0udaAhHQKIUJ++/QBx1fZQoaAZHQG6qqFyq+8JoB0upaAhHQKIURPwd8zB1fZQoaAZHQHKcx9kSVW1oB0usaAhHQKIUTm5lOGl1fZQoaAZHQHLHxrFfiP1oB0ukaAhHQKIUUyM1jy51fZQoaAZHQHNJ2bCrLhdoB0vtaAhHQKIUXISUTtd1fZQoaAZHQHBn0e2d/axoB0uxaAhHQKIUbDjzZpV1fZQoaAZHQHAWKNuLrHFoB0u3aAhHQKIU8slLOA11fZQoaAZHQHF7QYDTz/ZoB0vZaAhHQKIVERZlnRN1fZQoaAZHQHG6JXZGrjpoB0vIaAhHQKIVVA57w8Z1fZQoaAZHQHSaR+KCQLhoB0u3aAhHQKIV/ke6qbV1fZQoaAZHQHHIIPoV2zRoB0u7aAhHQKIWHAvcrRV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lunar_lander_ppo_v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeae49e3c34175f4f5b35d3b41635d36c4c611d6cf4cc97cab87e06ee2feb0df
3
+ size 1262850
lunar_lander_ppo_v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lunar_lander_ppo_v3/data ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5cae2cdc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5cae2ce50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5cae2cee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5cae2cf70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd5cae2d000>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd5cae2d090>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5cae2d120>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5cae2d1b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd5cae2d240>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5cae2d2d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5cae2d360>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5cae2d3f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd5cae22480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ "net_arch": [
25
+ {
26
+ "pi": [
27
+ 128,
28
+ 128,
29
+ 128,
30
+ 128
31
+ ],
32
+ "vf": [
33
+ 128,
34
+ 128,
35
+ 128,
36
+ 128
37
+ ]
38
+ }
39
+ ]
40
+ },
41
+ "num_timesteps": 1015808,
42
+ "_total_timesteps": 1000000.0,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1690643045613043468,
47
+ "learning_rate": 0.0003,
48
+ "tensorboard_log": null,
49
+ "_last_obs": {
50
+ ":type:": "<class 'numpy.ndarray'>",
51
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKAzC76efpQ96HpfPtEOdr4nXvM9+j1FPQAAAAAAAAAATVAWPeE86rrbIhW8mtPRO8s3Ljzw98G8AACAPwAAgD/N4h099rwcumb5ezfUbxgztqe2OxOEkrYAAIA/AACAP3MMwz2UD4I9tntBviaRj74saKa9VnNKPQAAAAAAAAAAcw6oPVRCtj92qzM/9CujvQTGY7uqcDA+AAAAAAAAAADt90U+2P6XPpaMzb7SreC+lcMCvrkUJ70AAAAAAAAAAAAexjzKNhw/Kd+Nu2PPIr/GUBI9Stb8vAAAAAAAAAAAwEEfPs8RSbzi5KA7C9gjutdsr70ftAC7AACAPwAAgD8NpsA9XCNSuou/YjOV7xwsYi8JOpebq7MAAIA/AACAPwCFB76Fg9a7xDUrvDZ7u7rABSo9xw+hOwAAgD8AAIA/AA+IPcMJULrgpPI05uksr7QK3rqGbVS0AACAPwAAgD96Pz6+zys8PrrbNz4/0Ja+46T1vWIZED4AAAAAAAAAAHO0/73u/+89ShFZPhndR77VYEc9x8M7OwAAAAAAAAAAWk6BvV0lsj9vYaC+huCLvvPdDL397Ti+AAAAAAAAAADC6q++8djxPlNVUb3QIzK/oEIMv/2mdTwAAAAAAAAAAOZDob1JZS09ShI7PksNKL7Ch7Y8TCGSOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
52
+ },
53
+ "_last_episode_starts": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
56
+ },
57
+ "_last_original_obs": null,
58
+ "_episode_num": 0,
59
+ "use_sde": false,
60
+ "sde_sample_freq": -1,
61
+ "_current_progress_remaining": -0.015808000000000044,
62
+ "_stats_window_size": 100,
63
+ "ep_info_buffer": {
64
+ ":type:": "<class 'collections.deque'>",
65
+ ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4prWy1NQGMAWyUS4eMAXSUR0CiAapZGKAKdX2UKGgGR0BHASIgvDgqaAdLXmgIR0CiAdsgU1yedX2UKGgGR0BxwlQSBbwCaAdL4mgIR0CiAf80UGmldX2UKGgGR0BxWbfAKv3baAdLrWgIR0CiAjGwJPZadX2UKGgGR0BxQzg5zYEoaAdLv2gIR0CiAl8dPtUodX2UKGgGR0Bx4abwz+FUaAdLxWgIR0CiAsTN+so2dX2UKGgGR0B0SzuG9HtnaAdL32gIR0CiAulBppN9dX2UKGgGR0BFn0E5hjOLaAdLemgIR0CiAvE/r0J4dX2UKGgGR0ByByHFglWwaAdL7GgIR0CiA0YQJ5VwdX2UKGgGR0Bw7ysJY1YRaAdLvmgIR0CiA1aSLZSOdX2UKGgGR0BxDo4KhL5AaAdLomgIR0CiA6BHLA58dX2UKGgGR0BxvJHqeK8+aAdLsWgIR0CiA/F8G9pRdX2UKGgGR0BxWecvugHvaAdLuWgIR0CiBELftQbddX2UKGgGR0Bw8CAwwj+raAdLxGgIR0CiBE1C5VfedX2UKGgGR0ByNFimVJL/aAdL72gIR0CiBFm7BfrsdX2UKGgGR0ByvM81XNkfaAdL6mgIR0CiBPeHaewtdX2UKGgGR0Bx9jjDKoycaAdLx2gIR0CiBRWQXAM2dX2UKGgGR0ByP2t1ZDAraAdL5GgIR0CiBWCay8jBdX2UKGgGR0Bxv9/QSi/PaAdL0GgIR0CiBV05U96kdX2UKGgGR0BxknPeHi3oaAdLtmgIR0CiBW8Zk079dX2UKGgGR0Bvqe+M6zVuaAdLrGgIR0CiBaVYZEUkdX2UKGgGR0ByCI3bVSXMaAdL2mgIR0CiBfcinpB5dX2UKGgGR0ByImoUBXCCaAdLvmgIR0CiBgBo/RmcdX2UKGgGR0BxA3Y150KaaAdL8mgIR0CiBjV7pmmMdX2UKGgGR0BxVJmz0HyFaAdLwmgIR0CiBm5/b0vodX2UKGgGR0BxqMS+QEIPaAdLjWgIR0CiByFG5MDfdX2UKGgGR0ByHGbqhUR4aAdLy2gIR0CiB1DvE0iydX2UKGgGR0Bx4tWFN+LFaAdL72gIR0CiB4l4C6pYdX2UKGgGR0Bw6JaC+UQkaAdL1GgIR0CiB5WDYh+wdX2UKGgGR0BxozVc2R7raAdLqWgIR0CiCAWCmMwUdX2UKGgGR0BxoByR0U48aAdLwmgIR0CiCCEFwDNhdX2UKGgGR0BxOV4TsY2saAdLyGgIR0CiCIDp1RtQdX2UKGgGR0BxM+yAxzq9aAdLyGgIR0CiCJQztTkydX2UKGgGR0Bw/HKNhmXgaAdNFwFoCEdAogiX40uUU3V9lChoBkdAcimT9KmKqGgHS9loCEdAogkHcHnln3V9lChoBkdAc8RD6WPcSGgHS8hoCEdAogkfwVj7RHV9lChoBkdAcWl1fVqesmgHS65oCEdAogkoood+5XV9lChoBkdAcI/8iOearmgHS89oCEdAogkxjFyaNXV9lChoBkdAcrXZ75VOsWgHS9RoCEdAogmBpDeCTXV9lChoBkdAcHqXOnl4kmgHS5hoCEdAognhFNL13HV9lChoBkdAcjmRvm5lOGgHS7xoCEdAogoQjnmq53V9lChoBkdAca9mu1WsBGgHS8hoCEdAogpvoNd7fHV9lChoBkdAcP8r2g398GgHS6BoCEdAogp9Nvfj0nV9lChoBkdAcSCVPepGWmgHS8poCEdAogq1urIYFnV9lChoBkdAcNeTVUdaMmgHS7FoCEdAogrb3Ehq03V9lChoBkdAciY3sXzlLmgHS6ZoCEdAogsM7hegMHV9lChoBkdAcs2FXaJyhmgHS6toCEdAogs0wztTk3V9lChoBkdAU5dWzWwu/WgHS5JoCEdAogvZMSK3u3V9lChoBkdAcMpKdhAnlWgHS7RoCEdAogvhYYBNmHV9lChoBkdAcjPxgiNbT2gHS8doCEdAogxcy8BdU3V9lChoBkdAb3xoX9BKMGgHS6hoCEdAogybgEU0vXV9lChoBkdAcfJB0IToMmgHS9loCEdAogygLiMo+nV9lChoBkdAcpL0P6KtP2gHS+BoCEdAogyzjLjgh3V9lChoBkdAcxIXcQAdXGgHTQUBaAhHQKIMuJbdJrd1fZQoaAZHQG7k+jua4MFoB0upaAhHQKIN4rNGEwp1fZQoaAZHQHQ732qT8pFoB0u4aAhHQKIN7fiPyTZ1fZQoaAZHQHDUCEYfnwJoB0vCaAhHQKIN8JLM9r51fZQoaAZHQHLZjUiILw5oB0vXaAhHQKIOAtW+49Z1fZQoaAZHQHIu7z5GjKxoB0viaAhHQKIOP4vexfR1fZQoaAZHQHHEB59mYjVoB0u0aAhHQKIOP37DVH51fZQoaAZHQHO21X3g1m9oB00AAWgIR0CiDk6DoQnQdX2UKGgGR0Bv6NXRw6yTaAdLk2gIR0CiDstbkfcOdX2UKGgGR0Bwk0D/2kBTaAdLtWgIR0CiDtwdS2pidX2UKGgGR0BxYJYnv2GqaAdLwGgIR0CiDwHVwxWUdX2UKGgGR0BwKVYJVsDXaAdLmWgIR0CiDxxjJ+2FdX2UKGgGR0BxF49wFTvRaAdLqWgIR0CiD3lz+3pfdX2UKGgGR0BwGLylN1yOaAdLuGgIR0CiD54EfT1DdX2UKGgGR0Bw0L3PAwfyaAdL1GgIR0CiECdxp+MIdX2UKGgGR0ByHDQNTcZcaAdLiGgIR0CiECl4keIVdX2UKGgGR0BykVsMy8BdaAdLqGgIR0CiEJ/c32mIdX2UKGgGR0BwSGWdEsreaAdLvGgIR0CiEPfc32mIdX2UKGgGR0BwmJYjjaPCaAdLs2gIR0CiESEDZDiPdX2UKGgGR0Bjz27e2uxKaAdN6ANoCEdAohF5GnXNDHV9lChoBkdAcydlANXo1WgHS8toCEdAohGceIVM23V9lChoBkdAZS8jSofjj2gHTegDaAhHQKIRpPGACnx1fZQoaAZHQHRq19v0h/1oB0u9aAhHQKISFHEMspZ1fZQoaAZHQHCftfkWAPNoB0vHaAhHQKISFilSCOF1fZQoaAZHQHKK5Grjo6loB0vzaAhHQKISIwsXizd1fZQoaAZHQHEl1zdUKiRoB0ukaAhHQKISIwUQCjl1fZQoaAZHQHGoEYoAn2JoB0t/aAhHQKISMynDR+l1fZQoaAZHQHMjHQID5j9oB0vZaAhHQKISQeyzHCJ1fZQoaAZHQHIg4Ym9g4RoB0u0aAhHQKISb2wmmch1fZQoaAZHQHD68CLdeppoB0veaAhHQKISjL+xW1d1fZQoaAZHQG7R6sQumJpoB0ulaAhHQKISpKmsNlR1fZQoaAZHQHE8lIuoP09oB0uyaAhHQKITb38GcF11fZQoaAZHQHHKBHLA57xoB0vKaAhHQKITfP9DQZ51fZQoaAZHQHEBU1qFh5RoB0uTaAhHQKITjHLidat1fZQoaAZHQHASJ71Iy0toB0ueaAhHQKITjDm8ujB1fZQoaAZHQHAPsHKOktVoB0u1aAhHQKIT/Qla8pV1fZQoaAZHQHG+DHwPRRdoB0udaAhHQKIUJ++/QBx1fZQoaAZHQG6qqFyq+8JoB0upaAhHQKIURPwd8zB1fZQoaAZHQHKcx9kSVW1oB0usaAhHQKIUTm5lOGl1fZQoaAZHQHLHxrFfiP1oB0ukaAhHQKIUUyM1jy51fZQoaAZHQHNJ2bCrLhdoB0vtaAhHQKIUXISUTtd1fZQoaAZHQHBn0e2d/axoB0uxaAhHQKIUbDjzZpV1fZQoaAZHQHAWKNuLrHFoB0u3aAhHQKIU8slLOA11fZQoaAZHQHF7QYDTz/ZoB0vZaAhHQKIVERZlnRN1fZQoaAZHQHG6JXZGrjpoB0vIaAhHQKIVVA57w8Z1fZQoaAZHQHSaR+KCQLhoB0u3aAhHQKIV/ke6qbV1fZQoaAZHQHHIIPoV2zRoB0u7aAhHQKIWHAvcrRV1ZS4="
66
+ },
67
+ "ep_success_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
70
+ },
71
+ "_n_updates": 310,
72
+ "observation_space": {
73
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
74
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
75
+ "dtype": "float32",
76
+ "bounded_below": "[ True True True True True True True True]",
77
+ "bounded_above": "[ True True True True True True True True]",
78
+ "_shape": [
79
+ 8
80
+ ],
81
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
84
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
85
+ "_np_random": null
86
+ },
87
+ "action_space": {
88
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
89
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
90
+ "n": "4",
91
+ "start": "0",
92
+ "_shape": [],
93
+ "dtype": "int64",
94
+ "_np_random": null
95
+ },
96
+ "n_envs": 16,
97
+ "n_steps": 2048,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 0.95,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "batch_size": 64,
104
+ "n_epochs": 10,
105
+ "clip_range": {
106
+ ":type:": "<class 'function'>",
107
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
108
+ },
109
+ "clip_range_vf": null,
110
+ "normalize_advantage": true,
111
+ "target_kl": null,
112
+ "lr_schedule": {
113
+ ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
115
+ }
116
+ }
lunar_lander_ppo_v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094ca39da3a1f1e8ef576d3feb3eedd3024ad71d36573445b19212b4864621c2
3
+ size 832241
lunar_lander_ppo_v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48feda71c348db6e994d22394b9617ee0535ffab9eb5e6a49c5fe6fb60fd5f36
3
+ size 414889
lunar_lander_ppo_v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_ppo_v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (165 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 279.6855793, "std_reward": 9.185483595221736, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T15:35:40.610559"}