improved model with better neural network
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander_ppo_v3.zip +3 -0
- lunar_lander_ppo_v3/_stable_baselines3_version +1 -0
- lunar_lander_ppo_v3/data +116 -0
- lunar_lander_ppo_v3/policy.optimizer.pth +3 -0
- lunar_lander_ppo_v3/policy.pth +3 -0
- lunar_lander_ppo_v3/pytorch_variables.pth +3 -0
- lunar_lander_ppo_v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.69 +/- 9.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5cae2cdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5cae2ce50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5cae2cee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5cae2cf70>", "_build": "<function ActorCriticPolicy._build at 0x7fd5cae2d000>", "forward": "<function ActorCriticPolicy.forward at 0x7fd5cae2d090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5cae2d120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5cae2d1b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd5cae2d240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5cae2d2d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5cae2d360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5cae2d3f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd5cae22480>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [128, 128, 128, 128], "vf": [128, 128, 128, 128]}]}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690643045613043468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKAzC76efpQ96HpfPtEOdr4nXvM9+j1FPQAAAAAAAAAATVAWPeE86rrbIhW8mtPRO8s3Ljzw98G8AACAPwAAgD/N4h099rwcumb5ezfUbxgztqe2OxOEkrYAAIA/AACAP3MMwz2UD4I9tntBviaRj74saKa9VnNKPQAAAAAAAAAAcw6oPVRCtj92qzM/9CujvQTGY7uqcDA+AAAAAAAAAADt90U+2P6XPpaMzb7SreC+lcMCvrkUJ70AAAAAAAAAAAAexjzKNhw/Kd+Nu2PPIr/GUBI9Stb8vAAAAAAAAAAAwEEfPs8RSbzi5KA7C9gjutdsr70ftAC7AACAPwAAgD8NpsA9XCNSuou/YjOV7xwsYi8JOpebq7MAAIA/AACAPwCFB76Fg9a7xDUrvDZ7u7rABSo9xw+hOwAAgD8AAIA/AA+IPcMJULrgpPI05uksr7QK3rqGbVS0AACAPwAAgD96Pz6+zys8PrrbNz4/0Ja+46T1vWIZED4AAAAAAAAAAHO0/73u/+89ShFZPhndR77VYEc9x8M7OwAAAAAAAAAAWk6BvV0lsj9vYaC+huCLvvPdDL397Ti+AAAAAAAAAADC6q++8djxPlNVUb3QIzK/oEIMv/2mdTwAAAAAAAAAAOZDob1JZS09ShI7PksNKL7Ch7Y8TCGSOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4prWy1NQGMAWyUS4eMAXSUR0CiAapZGKAKdX2UKGgGR0BHASIgvDgqaAdLXmgIR0CiAdsgU1yedX2UKGgGR0BxwlQSBbwCaAdL4mgIR0CiAf80UGmldX2UKGgGR0BxWbfAKv3baAdLrWgIR0CiAjGwJPZadX2UKGgGR0BxQzg5zYEoaAdLv2gIR0CiAl8dPtUodX2UKGgGR0Bx4abwz+FUaAdLxWgIR0CiAsTN+so2dX2UKGgGR0B0SzuG9HtnaAdL32gIR0CiAulBppN9dX2UKGgGR0BFn0E5hjOLaAdLemgIR0CiAvE/r0J4dX2UKGgGR0ByByHFglWwaAdL7GgIR0CiA0YQJ5VwdX2UKGgGR0Bw7ysJY1YRaAdLvmgIR0CiA1aSLZSOdX2UKGgGR0BxDo4KhL5AaAdLomgIR0CiA6BHLA58dX2UKGgGR0BxvJHqeK8+aAdLsWgIR0CiA/F8G9pRdX2UKGgGR0BxWecvugHvaAdLuWgIR0CiBELftQbddX2UKGgGR0Bw8CAwwj+raAdLxGgIR0CiBE1C5VfedX2UKGgGR0ByNFimVJL/aAdL72gIR0CiBFm7BfrsdX2UKGgGR0ByvM81XNkfaAdL6mgIR0CiBPeHaewtdX2UKGgGR0Bx9jjDKoycaAdLx2gIR0CiBRWQXAM2dX2UKGgGR0ByP2t1ZDAraAdL5GgIR0CiBWCay8jBdX2UKGgGR0Bxv9/QSi/PaAdL0GgIR0CiBV05U96kdX2UKGgGR0BxknPeHi3oaAdLtmgIR0CiBW8Zk079dX2UKGgGR0Bvqe+M6zVuaAdLrGgIR0CiBaVYZEUkdX2UKGgGR0ByCI3bVSXMaAdL2mgIR0CiBfcinpB5dX2UKGgGR0ByImoUBXCCaAdLvmgIR0CiBgBo/RmcdX2UKGgGR0BxA3Y150KaaAdL8mgIR0CiBjV7pmmMdX2UKGgGR0BxVJmz0HyFaAdLwmgIR0CiBm5/b0vodX2UKGgGR0BxqMS+QEIPaAdLjWgIR0CiByFG5MDfdX2UKGgGR0ByHGbqhUR4aAdLy2gIR0CiB1DvE0iydX2UKGgGR0Bx4tWFN+LFaAdL72gIR0CiB4l4C6pYdX2UKGgGR0Bw6JaC+UQkaAdL1GgIR0CiB5WDYh+wdX2UKGgGR0BxozVc2R7raAdLqWgIR0CiCAWCmMwUdX2UKGgGR0BxoByR0U48aAdLwmgIR0CiCCEFwDNhdX2UKGgGR0BxOV4TsY2saAdLyGgIR0CiCIDp1RtQdX2UKGgGR0BxM+yAxzq9aAdLyGgIR0CiCJQztTkydX2UKGgGR0Bw/HKNhmXgaAdNFwFoCEdAogiX40uUU3V9lChoBkdAcimT9KmKqGgHS9loCEdAogkHcHnln3V9lChoBkdAc8RD6WPcSGgHS8hoCEdAogkfwVj7RHV9lChoBkdAcWl1fVqesmgHS65oCEdAogkoood+5XV9lChoBkdAcI/8iOearmgHS89oCEdAogkxjFyaNXV9lChoBkdAcrXZ75VOsWgHS9RoCEdAogmBpDeCTXV9lChoBkdAcHqXOnl4kmgHS5hoCEdAognhFNL13HV9lChoBkdAcjmRvm5lOGgHS7xoCEdAogoQjnmq53V9lChoBkdAca9mu1WsBGgHS8hoCEdAogpvoNd7fHV9lChoBkdAcP8r2g398GgHS6BoCEdAogp9Nvfj0nV9lChoBkdAcSCVPepGWmgHS8poCEdAogq1urIYFnV9lChoBkdAcNeTVUdaMmgHS7FoCEdAogrb3Ehq03V9lChoBkdAciY3sXzlLmgHS6ZoCEdAogsM7hegMHV9lChoBkdAcs2FXaJyhmgHS6toCEdAogs0wztTk3V9lChoBkdAU5dWzWwu/WgHS5JoCEdAogvZMSK3u3V9lChoBkdAcMpKdhAnlWgHS7RoCEdAogvhYYBNmHV9lChoBkdAcjPxgiNbT2gHS8doCEdAogxcy8BdU3V9lChoBkdAb3xoX9BKMGgHS6hoCEdAogybgEU0vXV9lChoBkdAcfJB0IToMmgHS9loCEdAogygLiMo+nV9lChoBkdAcpL0P6KtP2gHS+BoCEdAogyzjLjgh3V9lChoBkdAcxIXcQAdXGgHTQUBaAhHQKIMuJbdJrd1fZQoaAZHQG7k+jua4MFoB0upaAhHQKIN4rNGEwp1fZQoaAZHQHQ732qT8pFoB0u4aAhHQKIN7fiPyTZ1fZQoaAZHQHDUCEYfnwJoB0vCaAhHQKIN8JLM9r51fZQoaAZHQHLZjUiILw5oB0vXaAhHQKIOAtW+49Z1fZQoaAZHQHIu7z5GjKxoB0viaAhHQKIOP4vexfR1fZQoaAZHQHHEB59mYjVoB0u0aAhHQKIOP37DVH51fZQoaAZHQHO21X3g1m9oB00AAWgIR0CiDk6DoQnQdX2UKGgGR0Bv6NXRw6yTaAdLk2gIR0CiDstbkfcOdX2UKGgGR0Bwk0D/2kBTaAdLtWgIR0CiDtwdS2pidX2UKGgGR0BxYJYnv2GqaAdLwGgIR0CiDwHVwxWUdX2UKGgGR0BwKVYJVsDXaAdLmWgIR0CiDxxjJ+2FdX2UKGgGR0BxF49wFTvRaAdLqWgIR0CiD3lz+3pfdX2UKGgGR0BwGLylN1yOaAdLuGgIR0CiD54EfT1DdX2UKGgGR0Bw0L3PAwfyaAdL1GgIR0CiECdxp+MIdX2UKGgGR0ByHDQNTcZcaAdLiGgIR0CiECl4keIVdX2UKGgGR0BykVsMy8BdaAdLqGgIR0CiEJ/c32mIdX2UKGgGR0BwSGWdEsreaAdLvGgIR0CiEPfc32mIdX2UKGgGR0BwmJYjjaPCaAdLs2gIR0CiESEDZDiPdX2UKGgGR0Bjz27e2uxKaAdN6ANoCEdAohF5GnXNDHV9lChoBkdAcydlANXo1WgHS8toCEdAohGceIVM23V9lChoBkdAZS8jSofjj2gHTegDaAhHQKIRpPGACnx1fZQoaAZHQHRq19v0h/1oB0u9aAhHQKISFHEMspZ1fZQoaAZHQHCftfkWAPNoB0vHaAhHQKISFilSCOF1fZQoaAZHQHKK5Grjo6loB0vzaAhHQKISIwsXizd1fZQoaAZHQHEl1zdUKiRoB0ukaAhHQKISIwUQCjl1fZQoaAZHQHGoEYoAn2JoB0t/aAhHQKISMynDR+l1fZQoaAZHQHMjHQID5j9oB0vZaAhHQKISQeyzHCJ1fZQoaAZHQHIg4Ym9g4RoB0u0aAhHQKISb2wmmch1fZQoaAZHQHD68CLdeppoB0veaAhHQKISjL+xW1d1fZQoaAZHQG7R6sQumJpoB0ulaAhHQKISpKmsNlR1fZQoaAZHQHE8lIuoP09oB0uyaAhHQKITb38GcF11fZQoaAZHQHHKBHLA57xoB0vKaAhHQKITfP9DQZ51fZQoaAZHQHEBU1qFh5RoB0uTaAhHQKITjHLidat1fZQoaAZHQHASJ71Iy0toB0ueaAhHQKITjDm8ujB1fZQoaAZHQHAPsHKOktVoB0u1aAhHQKIT/Qla8pV1fZQoaAZHQHG+DHwPRRdoB0udaAhHQKIUJ++/QBx1fZQoaAZHQG6qqFyq+8JoB0upaAhHQKIURPwd8zB1fZQoaAZHQHKcx9kSVW1oB0usaAhHQKIUTm5lOGl1fZQoaAZHQHLHxrFfiP1oB0ukaAhHQKIUUyM1jy51fZQoaAZHQHNJ2bCrLhdoB0vtaAhHQKIUXISUTtd1fZQoaAZHQHBn0e2d/axoB0uxaAhHQKIUbDjzZpV1fZQoaAZHQHAWKNuLrHFoB0u3aAhHQKIU8slLOA11fZQoaAZHQHF7QYDTz/ZoB0vZaAhHQKIVERZlnRN1fZQoaAZHQHG6JXZGrjpoB0vIaAhHQKIVVA57w8Z1fZQoaAZHQHSaR+KCQLhoB0u3aAhHQKIV/ke6qbV1fZQoaAZHQHHIIPoV2zRoB0u7aAhHQKIWHAvcrRV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_lander_ppo_v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeae49e3c34175f4f5b35d3b41635d36c4c611d6cf4cc97cab87e06ee2feb0df
|
3 |
+
size 1262850
|
lunar_lander_ppo_v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_lander_ppo_v3/data
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5cae2cdc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5cae2ce50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5cae2cee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5cae2cf70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd5cae2d000>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd5cae2d090>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5cae2d120>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5cae2d1b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd5cae2d240>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5cae2d2d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5cae2d360>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5cae2d3f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd5cae22480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
"net_arch": [
|
25 |
+
{
|
26 |
+
"pi": [
|
27 |
+
128,
|
28 |
+
128,
|
29 |
+
128,
|
30 |
+
128
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
128,
|
34 |
+
128,
|
35 |
+
128,
|
36 |
+
128
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"num_timesteps": 1015808,
|
42 |
+
"_total_timesteps": 1000000.0,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1690643045613043468,
|
47 |
+
"learning_rate": 0.0003,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"_last_obs": {
|
50 |
+
":type:": "<class 'numpy.ndarray'>",
|
51 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKAzC76efpQ96HpfPtEOdr4nXvM9+j1FPQAAAAAAAAAATVAWPeE86rrbIhW8mtPRO8s3Ljzw98G8AACAPwAAgD/N4h099rwcumb5ezfUbxgztqe2OxOEkrYAAIA/AACAP3MMwz2UD4I9tntBviaRj74saKa9VnNKPQAAAAAAAAAAcw6oPVRCtj92qzM/9CujvQTGY7uqcDA+AAAAAAAAAADt90U+2P6XPpaMzb7SreC+lcMCvrkUJ70AAAAAAAAAAAAexjzKNhw/Kd+Nu2PPIr/GUBI9Stb8vAAAAAAAAAAAwEEfPs8RSbzi5KA7C9gjutdsr70ftAC7AACAPwAAgD8NpsA9XCNSuou/YjOV7xwsYi8JOpebq7MAAIA/AACAPwCFB76Fg9a7xDUrvDZ7u7rABSo9xw+hOwAAgD8AAIA/AA+IPcMJULrgpPI05uksr7QK3rqGbVS0AACAPwAAgD96Pz6+zys8PrrbNz4/0Ja+46T1vWIZED4AAAAAAAAAAHO0/73u/+89ShFZPhndR77VYEc9x8M7OwAAAAAAAAAAWk6BvV0lsj9vYaC+huCLvvPdDL397Ti+AAAAAAAAAADC6q++8djxPlNVUb3QIzK/oEIMv/2mdTwAAAAAAAAAAOZDob1JZS09ShI7PksNKL7Ch7Y8TCGSOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
52 |
+
},
|
53 |
+
"_last_episode_starts": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
56 |
+
},
|
57 |
+
"_last_original_obs": null,
|
58 |
+
"_episode_num": 0,
|
59 |
+
"use_sde": false,
|
60 |
+
"sde_sample_freq": -1,
|
61 |
+
"_current_progress_remaining": -0.015808000000000044,
|
62 |
+
"_stats_window_size": 100,
|
63 |
+
"ep_info_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4prWy1NQGMAWyUS4eMAXSUR0CiAapZGKAKdX2UKGgGR0BHASIgvDgqaAdLXmgIR0CiAdsgU1yedX2UKGgGR0BxwlQSBbwCaAdL4mgIR0CiAf80UGmldX2UKGgGR0BxWbfAKv3baAdLrWgIR0CiAjGwJPZadX2UKGgGR0BxQzg5zYEoaAdLv2gIR0CiAl8dPtUodX2UKGgGR0Bx4abwz+FUaAdLxWgIR0CiAsTN+so2dX2UKGgGR0B0SzuG9HtnaAdL32gIR0CiAulBppN9dX2UKGgGR0BFn0E5hjOLaAdLemgIR0CiAvE/r0J4dX2UKGgGR0ByByHFglWwaAdL7GgIR0CiA0YQJ5VwdX2UKGgGR0Bw7ysJY1YRaAdLvmgIR0CiA1aSLZSOdX2UKGgGR0BxDo4KhL5AaAdLomgIR0CiA6BHLA58dX2UKGgGR0BxvJHqeK8+aAdLsWgIR0CiA/F8G9pRdX2UKGgGR0BxWecvugHvaAdLuWgIR0CiBELftQbddX2UKGgGR0Bw8CAwwj+raAdLxGgIR0CiBE1C5VfedX2UKGgGR0ByNFimVJL/aAdL72gIR0CiBFm7BfrsdX2UKGgGR0ByvM81XNkfaAdL6mgIR0CiBPeHaewtdX2UKGgGR0Bx9jjDKoycaAdLx2gIR0CiBRWQXAM2dX2UKGgGR0ByP2t1ZDAraAdL5GgIR0CiBWCay8jBdX2UKGgGR0Bxv9/QSi/PaAdL0GgIR0CiBV05U96kdX2UKGgGR0BxknPeHi3oaAdLtmgIR0CiBW8Zk079dX2UKGgGR0Bvqe+M6zVuaAdLrGgIR0CiBaVYZEUkdX2UKGgGR0ByCI3bVSXMaAdL2mgIR0CiBfcinpB5dX2UKGgGR0ByImoUBXCCaAdLvmgIR0CiBgBo/RmcdX2UKGgGR0BxA3Y150KaaAdL8mgIR0CiBjV7pmmMdX2UKGgGR0BxVJmz0HyFaAdLwmgIR0CiBm5/b0vodX2UKGgGR0BxqMS+QEIPaAdLjWgIR0CiByFG5MDfdX2UKGgGR0ByHGbqhUR4aAdLy2gIR0CiB1DvE0iydX2UKGgGR0Bx4tWFN+LFaAdL72gIR0CiB4l4C6pYdX2UKGgGR0Bw6JaC+UQkaAdL1GgIR0CiB5WDYh+wdX2UKGgGR0BxozVc2R7raAdLqWgIR0CiCAWCmMwUdX2UKGgGR0BxoByR0U48aAdLwmgIR0CiCCEFwDNhdX2UKGgGR0BxOV4TsY2saAdLyGgIR0CiCIDp1RtQdX2UKGgGR0BxM+yAxzq9aAdLyGgIR0CiCJQztTkydX2UKGgGR0Bw/HKNhmXgaAdNFwFoCEdAogiX40uUU3V9lChoBkdAcimT9KmKqGgHS9loCEdAogkHcHnln3V9lChoBkdAc8RD6WPcSGgHS8hoCEdAogkfwVj7RHV9lChoBkdAcWl1fVqesmgHS65oCEdAogkoood+5XV9lChoBkdAcI/8iOearmgHS89oCEdAogkxjFyaNXV9lChoBkdAcrXZ75VOsWgHS9RoCEdAogmBpDeCTXV9lChoBkdAcHqXOnl4kmgHS5hoCEdAognhFNL13HV9lChoBkdAcjmRvm5lOGgHS7xoCEdAogoQjnmq53V9lChoBkdAca9mu1WsBGgHS8hoCEdAogpvoNd7fHV9lChoBkdAcP8r2g398GgHS6BoCEdAogp9Nvfj0nV9lChoBkdAcSCVPepGWmgHS8poCEdAogq1urIYFnV9lChoBkdAcNeTVUdaMmgHS7FoCEdAogrb3Ehq03V9lChoBkdAciY3sXzlLmgHS6ZoCEdAogsM7hegMHV9lChoBkdAcs2FXaJyhmgHS6toCEdAogs0wztTk3V9lChoBkdAU5dWzWwu/WgHS5JoCEdAogvZMSK3u3V9lChoBkdAcMpKdhAnlWgHS7RoCEdAogvhYYBNmHV9lChoBkdAcjPxgiNbT2gHS8doCEdAogxcy8BdU3V9lChoBkdAb3xoX9BKMGgHS6hoCEdAogybgEU0vXV9lChoBkdAcfJB0IToMmgHS9loCEdAogygLiMo+nV9lChoBkdAcpL0P6KtP2gHS+BoCEdAogyzjLjgh3V9lChoBkdAcxIXcQAdXGgHTQUBaAhHQKIMuJbdJrd1fZQoaAZHQG7k+jua4MFoB0upaAhHQKIN4rNGEwp1fZQoaAZHQHQ732qT8pFoB0u4aAhHQKIN7fiPyTZ1fZQoaAZHQHDUCEYfnwJoB0vCaAhHQKIN8JLM9r51fZQoaAZHQHLZjUiILw5oB0vXaAhHQKIOAtW+49Z1fZQoaAZHQHIu7z5GjKxoB0viaAhHQKIOP4vexfR1fZQoaAZHQHHEB59mYjVoB0u0aAhHQKIOP37DVH51fZQoaAZHQHO21X3g1m9oB00AAWgIR0CiDk6DoQnQdX2UKGgGR0Bv6NXRw6yTaAdLk2gIR0CiDstbkfcOdX2UKGgGR0Bwk0D/2kBTaAdLtWgIR0CiDtwdS2pidX2UKGgGR0BxYJYnv2GqaAdLwGgIR0CiDwHVwxWUdX2UKGgGR0BwKVYJVsDXaAdLmWgIR0CiDxxjJ+2FdX2UKGgGR0BxF49wFTvRaAdLqWgIR0CiD3lz+3pfdX2UKGgGR0BwGLylN1yOaAdLuGgIR0CiD54EfT1DdX2UKGgGR0Bw0L3PAwfyaAdL1GgIR0CiECdxp+MIdX2UKGgGR0ByHDQNTcZcaAdLiGgIR0CiECl4keIVdX2UKGgGR0BykVsMy8BdaAdLqGgIR0CiEJ/c32mIdX2UKGgGR0BwSGWdEsreaAdLvGgIR0CiEPfc32mIdX2UKGgGR0BwmJYjjaPCaAdLs2gIR0CiESEDZDiPdX2UKGgGR0Bjz27e2uxKaAdN6ANoCEdAohF5GnXNDHV9lChoBkdAcydlANXo1WgHS8toCEdAohGceIVM23V9lChoBkdAZS8jSofjj2gHTegDaAhHQKIRpPGACnx1fZQoaAZHQHRq19v0h/1oB0u9aAhHQKISFHEMspZ1fZQoaAZHQHCftfkWAPNoB0vHaAhHQKISFilSCOF1fZQoaAZHQHKK5Grjo6loB0vzaAhHQKISIwsXizd1fZQoaAZHQHEl1zdUKiRoB0ukaAhHQKISIwUQCjl1fZQoaAZHQHGoEYoAn2JoB0t/aAhHQKISMynDR+l1fZQoaAZHQHMjHQID5j9oB0vZaAhHQKISQeyzHCJ1fZQoaAZHQHIg4Ym9g4RoB0u0aAhHQKISb2wmmch1fZQoaAZHQHD68CLdeppoB0veaAhHQKISjL+xW1d1fZQoaAZHQG7R6sQumJpoB0ulaAhHQKISpKmsNlR1fZQoaAZHQHE8lIuoP09oB0uyaAhHQKITb38GcF11fZQoaAZHQHHKBHLA57xoB0vKaAhHQKITfP9DQZ51fZQoaAZHQHEBU1qFh5RoB0uTaAhHQKITjHLidat1fZQoaAZHQHASJ71Iy0toB0ueaAhHQKITjDm8ujB1fZQoaAZHQHAPsHKOktVoB0u1aAhHQKIT/Qla8pV1fZQoaAZHQHG+DHwPRRdoB0udaAhHQKIUJ++/QBx1fZQoaAZHQG6qqFyq+8JoB0upaAhHQKIURPwd8zB1fZQoaAZHQHKcx9kSVW1oB0usaAhHQKIUTm5lOGl1fZQoaAZHQHLHxrFfiP1oB0ukaAhHQKIUUyM1jy51fZQoaAZHQHNJ2bCrLhdoB0vtaAhHQKIUXISUTtd1fZQoaAZHQHBn0e2d/axoB0uxaAhHQKIUbDjzZpV1fZQoaAZHQHAWKNuLrHFoB0u3aAhHQKIU8slLOA11fZQoaAZHQHF7QYDTz/ZoB0vZaAhHQKIVERZlnRN1fZQoaAZHQHG6JXZGrjpoB0vIaAhHQKIVVA57w8Z1fZQoaAZHQHSaR+KCQLhoB0u3aAhHQKIV/ke6qbV1fZQoaAZHQHHIIPoV2zRoB0u7aAhHQKIWHAvcrRV1ZS4="
|
66 |
+
},
|
67 |
+
"ep_success_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
70 |
+
},
|
71 |
+
"_n_updates": 310,
|
72 |
+
"observation_space": {
|
73 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
74 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
75 |
+
"dtype": "float32",
|
76 |
+
"bounded_below": "[ True True True True True True True True]",
|
77 |
+
"bounded_above": "[ True True True True True True True True]",
|
78 |
+
"_shape": [
|
79 |
+
8
|
80 |
+
],
|
81 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
84 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
85 |
+
"_np_random": null
|
86 |
+
},
|
87 |
+
"action_space": {
|
88 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
89 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
90 |
+
"n": "4",
|
91 |
+
"start": "0",
|
92 |
+
"_shape": [],
|
93 |
+
"dtype": "int64",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 16,
|
97 |
+
"n_steps": 2048,
|
98 |
+
"gamma": 0.99,
|
99 |
+
"gae_lambda": 0.95,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.5,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"batch_size": 64,
|
104 |
+
"n_epochs": 10,
|
105 |
+
"clip_range": {
|
106 |
+
":type:": "<class 'function'>",
|
107 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
108 |
+
},
|
109 |
+
"clip_range_vf": null,
|
110 |
+
"normalize_advantage": true,
|
111 |
+
"target_kl": null,
|
112 |
+
"lr_schedule": {
|
113 |
+
":type:": "<class 'function'>",
|
114 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
115 |
+
}
|
116 |
+
}
|
lunar_lander_ppo_v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:094ca39da3a1f1e8ef576d3feb3eedd3024ad71d36573445b19212b4864621c2
|
3 |
+
size 832241
|
lunar_lander_ppo_v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48feda71c348db6e994d22394b9617ee0535ffab9eb5e6a49c5fe6fb60fd5f36
|
3 |
+
size 414889
|
lunar_lander_ppo_v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_ppo_v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.6855793, "std_reward": 9.185483595221736, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-29T15:35:40.610559"}
|