nikcheerla commited on
Commit
ed3a4df
1 Parent(s): 1757b5d

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 'I''m sorry. The person you are trying to reach has a voice mailbox that has
12
+ not been set up yet. Please try your call '
13
+ - text: 'For calling WL Gore and Associates Incorporated. Please wait '
14
+ - text: 'Hello. Please state your name after the tone, and Google Voice will try '
15
+ - text: 'Thank you for calling Stanley Black and Decker. For the company directory,
16
+ press 1. For investor relations, press 2. '
17
+ - text: 'Sorry. Chris Trent is not available. Record your message at the tone. When
18
+ you are finished, hang up or press pound for more options. '
19
+ pipeline_tag: text-classification
20
+ inference: true
21
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
22
+ ---
23
+
24
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
25
+
26
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
27
+
28
+ The model has been trained using an efficient few-shot learning technique that involves:
29
+
30
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
31
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
32
+
33
+ ## Model Details
34
+
35
+ ### Model Description
36
+ - **Model Type:** SetFit
37
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
38
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
39
+ - **Maximum Sequence Length:** 512 tokens
40
+ - **Number of Classes:** 2 classes
41
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
42
+ <!-- - **Language:** Unknown -->
43
+ <!-- - **License:** Unknown -->
44
+
45
+ ### Model Sources
46
+
47
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
48
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
49
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
50
+
51
+ ### Model Labels
52
+ | Label | Examples |
53
+ |:-----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
54
+ | voicemail | <ul><li>'Your call has been forwarded to an automated voice messaging system. 6 '</li><li>'Please leave your message for 8083526996. '</li><li>"This is Bart Jumper. I'm sorry I missed your call. Please leave your name and number, and I'll return your call as soon as I "</li></ul> |
55
+ | phone_tree | <ul><li>'Thank you for calling Periton. A next '</li><li>'Thank you for calling Signifide. Our main number has changed. The new number is eight six six two '</li><li>'Thank you for calling Icahn Health and Fitness. If you know the extension you wish to reach, '</li></ul> |
56
+
57
+ ## Uses
58
+
59
+ ### Direct Use for Inference
60
+
61
+ First install the SetFit library:
62
+
63
+ ```bash
64
+ pip install setfit
65
+ ```
66
+
67
+ Then you can load this model and run inference.
68
+
69
+ ```python
70
+ from setfit import SetFitModel
71
+
72
+ # Download from the 🤗 Hub
73
+ model = SetFitModel.from_pretrained("nikcheerla/amd-full-phonetree-v1")
74
+ # Run inference
75
+ preds = model("For calling WL Gore and Associates Incorporated. Please wait ")
76
+ ```
77
+
78
+ <!--
79
+ ### Downstream Use
80
+
81
+ *List how someone could finetune this model on their own dataset.*
82
+ -->
83
+
84
+ <!--
85
+ ### Out-of-Scope Use
86
+
87
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
88
+ -->
89
+
90
+ <!--
91
+ ## Bias, Risks and Limitations
92
+
93
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
94
+ -->
95
+
96
+ <!--
97
+ ### Recommendations
98
+
99
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
100
+ -->
101
+
102
+ ## Training Details
103
+
104
+ ### Training Set Metrics
105
+ | Training set | Min | Median | Max |
106
+ |:-------------|:----|:--------|:----|
107
+ | Word count | 1 | 14.7789 | 214 |
108
+
109
+ | Label | Training Sample Count |
110
+ |:-----------|:----------------------|
111
+ | phone_tree | 4979 |
112
+ | voicemail | 5519 |
113
+
114
+ ### Training Hyperparameters
115
+ - batch_size: (32, 32)
116
+ - num_epochs: (3, 3)
117
+ - max_steps: -1
118
+ - sampling_strategy: oversampling
119
+ - num_iterations: 20
120
+ - body_learning_rate: (2e-05, 1e-05)
121
+ - head_learning_rate: 0.01
122
+ - loss: CosineSimilarityLoss
123
+ - distance_metric: cosine_distance
124
+ - margin: 0.25
125
+ - end_to_end: False
126
+ - use_amp: True
127
+ - warmup_proportion: 0.1
128
+ - seed: 42
129
+ - eval_max_steps: -1
130
+ - load_best_model_at_end: True
131
+
132
+ ### Training Results
133
+ | Epoch | Step | Training Loss | Validation Loss |
134
+ |:-------:|:---------:|:-------------:|:---------------:|
135
+ | 0.0001 | 1 | 0.2196 | - |
136
+ | 1.0 | 13123 | 0.0001 | 0.1209 |
137
+ | **2.0** | **26246** | **0.0** | **0.1101** |
138
+ | 3.0 | 39369 | 0.0446 | 0.1108 |
139
+
140
+ * The bold row denotes the saved checkpoint.
141
+ ### Framework Versions
142
+ - Python: 3.10.12
143
+ - SetFit: 1.0.1
144
+ - Sentence Transformers: 2.2.2
145
+ - Transformers: 4.35.2
146
+ - PyTorch: 2.0.1+cu118
147
+ - Datasets: 2.16.1
148
+ - Tokenizers: 0.15.0
149
+
150
+ ## Citation
151
+
152
+ ### BibTeX
153
+ ```bibtex
154
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
155
+ doi = {10.48550/ARXIV.2209.11055},
156
+ url = {https://arxiv.org/abs/2209.11055},
157
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
158
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
159
+ title = {Efficient Few-Shot Learning Without Prompts},
160
+ publisher = {arXiv},
161
+ year = {2022},
162
+ copyright = {Creative Commons Attribution 4.0 International}
163
+ }
164
+ ```
165
+
166
+ <!--
167
+ ## Glossary
168
+
169
+ *Clearly define terms in order to be accessible across audiences.*
170
+ -->
171
+
172
+ <!--
173
+ ## Model Card Authors
174
+
175
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
176
+ -->
177
+
178
+ <!--
179
+ ## Model Card Contact
180
+
181
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
182
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_26246/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59e7beac795de102ed4094beb8fc6d2d2bff19e55781724941bb10c92e0df05b
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e690408f07b655c2e3aa739059a1a2404bc171d592cf0394a145d8a4215875
3
+ size 7055
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff