File size: 2,171 Bytes
a2a8ec5 a8c9061 a2a8ec5 49f3678 a2a8ec5 a8c9061 49f3678 a2a8ec5 88e8250 a2a8ec5 70c9169 a2a8ec5 49f3678 a2a8ec5 adc4544 a2a8ec5 70c9169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: whisper-small-uk
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_1
type: common_voice_16_1
config: uk
split: test
args:
language: uk
metrics:
- name: Wer
type: wer
value: 26.357029928161317
language:
- uk
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-uk
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [mozilla-foundation/common_voice_16_1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2744
- Wer: 26.3570
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.278 | 0.47 | 1000 | 0.3330 | 31.8004 |
| 0.2662 | 0.94 | 2000 | 0.2961 | 29.4969 |
| 0.1403 | 1.42 | 3000 | 0.2796 | 27.3209 |
| 0.1105 | 1.89 | 4000 | 0.2702 | 26.2724 |
| 0.0719 | 2.36 | 5000 | 0.2744 | 26.3570 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 |