nitrosocke commited on
Commit
2c8823a
1 Parent(s): 309ef78

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -14
README.md CHANGED
@@ -9,13 +9,23 @@ tags:
9
  This is the fine-tuned Stable Diffusion model trained on high resolution 3D artworks.
10
  Use the tokens **_redshift style_** in your prompts for the effect.
11
 
12
- **If you enjoy my work, please consider supporting me**
 
 
13
  [![Become A Patreon](https://badgen.net/badge/become/a%20patron/F96854)](https://patreon.com/user?u=79196446)
14
 
15
  **Characters rendered with the model:**
16
- ![Videogame Samples](https://huggingface.co/nitrosocke/classic-anim-diffusion/resolve/main/clanim-samples-01s.jpg)
17
  **Cars and Landscapes rendered with the model:**
18
- ![Misc. Samples](https://huggingface.co/nitrosocke/classic-anim-diffusion/resolve/main/clanim-samples-03s.jpg)
 
 
 
 
 
 
 
 
19
 
20
  ### 🧨 Diffusers
21
 
@@ -28,25 +38,17 @@ You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/op
28
  from diffusers import StableDiffusionPipeline
29
  import torch
30
 
31
- model_id = "nitrosocke/classic-anim-diffusion"
32
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
33
  pipe = pipe.to("cuda")
34
 
35
- prompt = "classic disney style magical princess with golden hair"
36
  image = pipe(prompt).images[0]
37
 
38
  image.save("./magical_princess.png")
39
  ```
40
 
41
- #### Prompt and settings for Helen Mirren:
42
- **classic disney style helen mirren as a queen**
43
- _Steps: 30, Sampler: Euler a, CFG scale: 7, Seed: 3496225274, Size: 512x704_
44
-
45
- #### Prompt and settings for the Ford Model T:
46
- **classic disney style Ford Model T - Negative prompt: person**
47
- _Steps: 20, Sampler: DPM2 Karras, CFG scale: 7, Seed: 4817981, Size: 704x512_
48
-
49
- This model was trained using the diffusers based dreambooth training by ShivamShrirao using prior-preservation loss and the _train-text-encoder_ flag in 9.000 steps.
50
 
51
  ## License
52
 
 
9
  This is the fine-tuned Stable Diffusion model trained on high resolution 3D artworks.
10
  Use the tokens **_redshift style_** in your prompts for the effect.
11
 
12
+ **The name:** I used Cinema4D for a very long time as my go-to modeling software and always liked the redshift render it came with. That is why I was very sad to see the bad results base SD has connected with its token. This is my attempt at fixing that and showing my passion for this render engine.
13
+
14
+ **If you enjoy my work and want to test new models before release, please consider supporting me**
15
  [![Become A Patreon](https://badgen.net/badge/become/a%20patron/F96854)](https://patreon.com/user?u=79196446)
16
 
17
  **Characters rendered with the model:**
18
+ ![Videogame Samples](https://huggingface.co/nitrosocke/redshift-diffusion/resolve/main/images/redshift-diffusion-samples-01s.jpg)
19
  **Cars and Landscapes rendered with the model:**
20
+ ![Misc. Samples](https://huggingface.co/nitrosocke/redshift-diffusion/resolve/main/images/redshift-diffusion-samples-02s.jpg)
21
+
22
+ #### Prompt and settings for Tony Stark:
23
+ **(redshift style) robert downey jr as ironman Negative prompt: glasses helmet**
24
+ _Steps: 40, Sampler: DPM2 Karras, CFG scale: 7, Seed: 908018284, Size: 512x704_
25
+
26
+ #### Prompt and settings for the Ford Mustang:
27
+ **redshift style Ford Mustang**
28
+ _Steps: 20, Sampler: DPM2 Karras, CFG scale: 7, Seed: 579593863, Size: 704x512_
29
 
30
  ### 🧨 Diffusers
31
 
 
38
  from diffusers import StableDiffusionPipeline
39
  import torch
40
 
41
+ model_id = "nitrosocke/redshift-diffusion"
42
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
43
  pipe = pipe.to("cuda")
44
 
45
+ prompt = "redshift style magical princess with golden hair"
46
  image = pipe(prompt).images[0]
47
 
48
  image.save("./magical_princess.png")
49
  ```
50
 
51
+ This model was trained using the diffusers based dreambooth training by ShivamShrirao using prior-preservation loss and the _train-text-encoder_ flag in 11.000 steps.
 
 
 
 
 
 
 
 
52
 
53
  ## License
54