Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
metrics:
|
5 |
+
- rouge
|
6 |
+
---
|
7 |
+
# Personalised opener
|
8 |
+
This model creates an opener based on a provided interest.
|
9 |
+
### Model input
|
10 |
+
> [INTEREST]
|
11 |
+
### Example
|
12 |
+
> dancing
|
13 |
+
|
14 |
+
### Output
|
15 |
+
> What's your favorite dance move to make people laugh or cry?
|
16 |
+
|
17 |
+
### How to use in code
|
18 |
+
```{python}
|
19 |
+
import nltk
|
20 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("njvdnbus/personalised_opener-t5-large")
|
22 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("njvdnbus/personalised_opener-t5-large")
|
23 |
+
|
24 |
+
def use_model(text):
|
25 |
+
inputs = ["" + text]
|
26 |
+
inputs = tokenizer(inputs, truncation=True, return_tensors="pt")
|
27 |
+
output = model.generate(**inputs, num_beams=1, do_sample=True, min_length=10, max_length=256)
|
28 |
+
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
29 |
+
predicted_interests = nltk.sent_tokenize(decoded_output.strip())[0]
|
30 |
+
return predicted_interests
|
31 |
+
|
32 |
+
text= "tennis"
|
33 |
+
print(use_model(text))
|
34 |
+
```
|
35 |
+
|
36 |
+
> Do you think tennis is the most exciting sport out there?
|