File size: 1,553 Bytes
6ee4217 8b9506e 6ee4217 8b9506e 6ee4217 8d53425 6ee4217 8d53425 6ee4217 8d53425 6ee4217 8d53425 6ee4217 8d53425 6ee4217 8d53425 6ee4217 8d53425 6ad2c3c 8d53425 6ad2c3c 8d53425 6ad2c3c 8d53425 6ad2c3c 8d53425 6ad2c3c 8d53425 6ad2c3c 6ee4217 8d53425 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tool-bert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tool-bert
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0141
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 32 | 0.5841 | 0.824 |
| No log | 2.0 | 64 | 0.0964 | 1.0 |
| No log | 3.0 | 96 | 0.0206 | 1.0 |
| No log | 4.0 | 128 | 0.0141 | 1.0 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|