## Creation ```python from datasets import load_dataset from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot # Select model and load it. MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct" model = SparseAutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Select calibration dataset. DATASET_ID = "mgoin/ultrachat_2k" DATASET_SPLIT = "train_sft" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): return { "text": tokenizer.apply_chat_template( example["messages"], tokenize=False, ) } ds = ds.map(preprocess) # Tokenize inputs. def tokenize(sample): return tokenizer( sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False, ) ds = ds.map(tokenize, remove_columns=ds.column_names) # Configure the quantization algorithm to run. recipe = """ quantization_stage: run_type: oneshot quantization_modifiers: GPTQModifier: ignore: ["lm_head"] config_groups: group_0: weights: num_bits: 4 type: "int" symmetric: true strategy: "group" group_size: 128 targets: [ "re:.*mlp.[^.]*_proj", ] group_1: weights: num_bits: 8 type: "int" symmetric: true strategy: "channel" targets: [ "re:.*self_attn.[^.]*_proj", ] """ # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, ) # Save to disk compressed. SAVE_DIR = MODEL_ID.split("/")[1] + "-GPTQ-nonuniform" model.save_pretrained(SAVE_DIR) tokenizer.save_pretrained(SAVE_DIR) # Confirm generations of the quantized model look sane. print("\n\n") print("========== SAMPLE GENERATION ==============") input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=100) print(tokenizer.decode(output[0])) print("==========================================\n\n") ```