Upload model
Browse files- config.json +71 -29
- configuration_hf_nomic_bert.py +56 -0
- model.safetensors +2 -2
- modeling_hf_nomic_bert.py +2048 -0
config.json
CHANGED
@@ -1,40 +1,82 @@
|
|
1 |
{
|
2 |
-
"activation_function": "
|
3 |
-
"add_prefix": false,
|
4 |
"architectures": [
|
5 |
"NomicVisionModel"
|
6 |
],
|
7 |
-
"auto_map": {
|
8 |
-
"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
|
9 |
-
"AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicVisionModel",
|
10 |
-
},
|
11 |
"attn_pdrop": 0.0,
|
12 |
-
"
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"
|
17 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"mlp_fc1_bias": true,
|
19 |
"mlp_fc2_bias": true,
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"qkv_proj_bias": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"rotary_emb_base": 10000,
|
31 |
-
"rotary_emb_fraction":
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"transformers_version": "4.40.2",
|
38 |
-
"
|
39 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
}
|
|
|
1 |
{
|
2 |
+
"activation_function": "swiglu",
|
|
|
3 |
"architectures": [
|
4 |
"NomicVisionModel"
|
5 |
],
|
|
|
|
|
|
|
|
|
6 |
"attn_pdrop": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_hf_nomic_bert.NomicBertConfig",
|
9 |
+
"AutoModel": "modeling_hf_nomic_bert.NomicVisionModel"
|
10 |
+
},
|
11 |
+
"bos_token_id": null,
|
12 |
+
"causal": false,
|
13 |
+
"dense_seq_output": true,
|
14 |
+
"drop_path_rate": 0.0,
|
15 |
+
"embd_pdrop": 0.0,
|
16 |
+
"eos_token_id": null,
|
17 |
+
"eva_qkv_bias": false,
|
18 |
+
"fused_bias_fc": true,
|
19 |
+
"fused_dropout_add_ln": true,
|
20 |
+
"global_pool": null,
|
21 |
+
"hidden_features_scaling_factor": 1.0,
|
22 |
+
"img_size": 224,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"layer_norm_epsilon": 1e-06,
|
25 |
+
"layer_scale": false,
|
26 |
+
"layer_scale_init": 1.0,
|
27 |
+
"learned_pos_embedding": false,
|
28 |
+
"mask_token": false,
|
29 |
+
"max_trained_positions": 2048,
|
30 |
"mlp_fc1_bias": true,
|
31 |
"mlp_fc2_bias": true,
|
32 |
+
"model_type": "nomic_bert",
|
33 |
+
"n_embd": 768,
|
34 |
+
"n_head": 12,
|
35 |
+
"n_inner": 2048.0,
|
36 |
+
"n_layer": 12,
|
37 |
+
"n_positions": 0,
|
38 |
+
"no_cls_token": false,
|
39 |
+
"no_embed_class": false,
|
40 |
+
"no_last_ln": true,
|
41 |
+
"norm_mlp": true,
|
42 |
+
"num_channels": 3,
|
43 |
+
"pad_vocab_size_multiple": 1,
|
44 |
+
"parallel_block": false,
|
45 |
+
"parallel_block_tied_norm": false,
|
46 |
+
"patch_dropout": 0,
|
47 |
+
"patch_embed_bias": true,
|
48 |
+
"patch_size": 16,
|
49 |
+
"prenorm": true,
|
50 |
+
"prepre_layernom": false,
|
51 |
"qkv_proj_bias": true,
|
52 |
+
"ref_feat_shape": [
|
53 |
+
14,
|
54 |
+
14
|
55 |
+
],
|
56 |
+
"register_tokens": 0,
|
57 |
+
"reorder_and_upcast_attn": false,
|
58 |
+
"resid_pdrop": 0.0,
|
59 |
"rotary_emb_base": 10000,
|
60 |
+
"rotary_emb_fraction": 0,
|
61 |
+
"rotary_emb_interleaved": false,
|
62 |
+
"rotary_emb_scale_base": null,
|
63 |
+
"rotary_scaling_factor": null,
|
64 |
+
"scale_attn_by_inverse_layer_idx": false,
|
65 |
+
"scale_attn_weights": true,
|
66 |
+
"sinusoidal_pos_embedding": false,
|
67 |
+
"summary_activation": null,
|
68 |
+
"summary_first_dropout": 0.1,
|
69 |
+
"summary_proj_to_labels": true,
|
70 |
+
"summary_type": "cls_index",
|
71 |
+
"summary_use_proj": true,
|
72 |
+
"torch_dtype": "float16",
|
73 |
"transformers_version": "4.40.2",
|
74 |
+
"type_vocab_size": 2,
|
75 |
+
"use_cache": true,
|
76 |
+
"use_flash_attn": true,
|
77 |
+
"use_pos_embed": true,
|
78 |
+
"use_rms_norm": false,
|
79 |
+
"use_rotary_pos_emb": true,
|
80 |
+
"use_xentropy": false,
|
81 |
+
"vocab_size": 0
|
82 |
}
|
configuration_hf_nomic_bert.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config
|
2 |
+
|
3 |
+
|
4 |
+
class NomicBertConfig(GPT2Config):
|
5 |
+
model_type = "nomic_bert"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
prenorm=False,
|
10 |
+
parallel_block=False,
|
11 |
+
parallel_block_tied_norm=False,
|
12 |
+
rotary_emb_fraction=0.0,
|
13 |
+
fused_dropout_add_ln=False,
|
14 |
+
fused_bias_fc=False,
|
15 |
+
use_flash_attn=False,
|
16 |
+
use_xentropy=False,
|
17 |
+
qkv_proj_bias=True,
|
18 |
+
rotary_emb_base=10_000,
|
19 |
+
rotary_emb_scale_base=None,
|
20 |
+
rotary_emb_interleaved=False,
|
21 |
+
mlp_fc1_bias=True,
|
22 |
+
mlp_fc2_bias=True,
|
23 |
+
use_rms_norm=False,
|
24 |
+
causal=False,
|
25 |
+
type_vocab_size=2,
|
26 |
+
dense_seq_output=True,
|
27 |
+
pad_vocab_size_multiple=1,
|
28 |
+
tie_word_embeddings=True,
|
29 |
+
rotary_scaling_factor=None,
|
30 |
+
max_trained_positions=2048,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.prenorm = prenorm
|
34 |
+
self.parallel_block = parallel_block
|
35 |
+
self.parallel_block_tied_norm = parallel_block_tied_norm
|
36 |
+
self.rotary_emb_fraction = rotary_emb_fraction
|
37 |
+
self.tie_word_embeddings = tie_word_embeddings
|
38 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
39 |
+
self.fused_bias_fc = fused_bias_fc
|
40 |
+
self.use_flash_attn = use_flash_attn
|
41 |
+
self.use_xentropy = use_xentropy
|
42 |
+
self.qkv_proj_bias = qkv_proj_bias
|
43 |
+
self.rotary_emb_base = rotary_emb_base
|
44 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
45 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
46 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
47 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
48 |
+
self.use_rms_norm = use_rms_norm
|
49 |
+
self.causal = causal
|
50 |
+
self.type_vocab_size = type_vocab_size
|
51 |
+
self.dense_seq_output = dense_seq_output
|
52 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
53 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
54 |
+
self.max_trained_positions = max_trained_positions
|
55 |
+
|
56 |
+
super().__init__(**kwargs)
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9457488f1480ba5c120c4c203ccc7eca961d4f4c2f9df3e94dbdf4b15a435712
|
3 |
+
size 185913176
|
modeling_hf_nomic_bert.py
ADDED
@@ -0,0 +1,2048 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Tri Dao.
|
2 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
3 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
4 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
+
import math
|
10 |
+
import numpy as np
|
11 |
+
import collections
|
12 |
+
import os
|
13 |
+
import re
|
14 |
+
from collections import OrderedDict
|
15 |
+
from functools import partial
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from einops import rearrange, repeat
|
22 |
+
from safetensors.torch import load_file as safe_load_file
|
23 |
+
from transformers import GPT2Config, PreTrainedModel, ViTModel, ViTConfig
|
24 |
+
from transformers.models.bert.modeling_bert import (
|
25 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
26 |
+
MaskedLMOutput,
|
27 |
+
SequenceClassifierOutput,
|
28 |
+
)
|
29 |
+
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
30 |
+
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
31 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
32 |
+
from torch.nn.modules.utils import _pair
|
33 |
+
|
34 |
+
from .configuration_hf_nomic_bert import NomicBertConfig
|
35 |
+
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# adapted from flash attention, added safe serialization option for hf models
|
40 |
+
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
41 |
+
# If not fp32, then we don't want to load directly to the GPU
|
42 |
+
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
43 |
+
is_sharded = False
|
44 |
+
load_safe = False
|
45 |
+
resolved_archive_file = None
|
46 |
+
|
47 |
+
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
48 |
+
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
49 |
+
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
50 |
+
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
51 |
+
|
52 |
+
if os.path.isfile(weights_path):
|
53 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
54 |
+
elif os.path.isfile(weights_index_path):
|
55 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
56 |
+
is_sharded = True
|
57 |
+
elif os.path.isfile(safe_weights_path):
|
58 |
+
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
59 |
+
load_safe = True
|
60 |
+
elif os.path.isfile(safe_weights_index_path):
|
61 |
+
resolved_archive_file = cached_file(
|
62 |
+
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
63 |
+
)
|
64 |
+
is_sharded = True
|
65 |
+
load_safe = True
|
66 |
+
else: # Try loading from HF hub instead of from local files
|
67 |
+
resolved_archive_file = None
|
68 |
+
for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
69 |
+
resolved_archive_file = cached_file(
|
70 |
+
model_name, weight_name, _raise_exceptions_for_missing_entries=False
|
71 |
+
)
|
72 |
+
if resolved_archive_file is not None:
|
73 |
+
if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
74 |
+
load_safe = True
|
75 |
+
if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
76 |
+
is_sharded = True
|
77 |
+
break
|
78 |
+
|
79 |
+
if resolved_archive_file is None:
|
80 |
+
raise EnvironmentError(f"Model name {model_name} was not found.")
|
81 |
+
|
82 |
+
if load_safe:
|
83 |
+
loader = partial(safe_load_file, device=mapped_device)
|
84 |
+
else:
|
85 |
+
loader = partial(torch.load, map_location=mapped_device)
|
86 |
+
|
87 |
+
if is_sharded:
|
88 |
+
# resolved_archive_file becomes a list of files that point to the different
|
89 |
+
# checkpoint shards in this case.
|
90 |
+
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
91 |
+
state_dict = {}
|
92 |
+
for sharded_file in resolved_archive_file:
|
93 |
+
state_dict.update(loader(sharded_file))
|
94 |
+
else:
|
95 |
+
state_dict = loader(resolved_archive_file)
|
96 |
+
# Convert dtype before moving to GPU to save memory
|
97 |
+
if dtype is not None:
|
98 |
+
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
99 |
+
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
100 |
+
return state_dict
|
101 |
+
|
102 |
+
|
103 |
+
def filter_shapes(state_dict, model):
|
104 |
+
"""
|
105 |
+
Filters the state dict to match the current model shape.
|
106 |
+
"""
|
107 |
+
filtered_state_dict = {}
|
108 |
+
for key, value in state_dict.items():
|
109 |
+
if key in model.state_dict():
|
110 |
+
if value.shape == model.state_dict()[key].shape:
|
111 |
+
filtered_state_dict[key] = value
|
112 |
+
return filtered_state_dict
|
113 |
+
|
114 |
+
|
115 |
+
def remap_bert_state_dict(
|
116 |
+
state_dict,
|
117 |
+
config,
|
118 |
+
remove_bert=False,
|
119 |
+
remove_cls_weights=False,
|
120 |
+
add_pooling_layer=False,
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def add_bert_prefix(key):
|
127 |
+
# prepend bert. to the key
|
128 |
+
if key.startswith("bert.") or key.startswith("cls."):
|
129 |
+
return key
|
130 |
+
return f"bert.{key}"
|
131 |
+
|
132 |
+
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
133 |
+
|
134 |
+
# LayerNorm
|
135 |
+
def key_mapping_ln_gamma_beta(key):
|
136 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
137 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
138 |
+
return key
|
139 |
+
|
140 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
141 |
+
|
142 |
+
# Layers
|
143 |
+
def key_mapping_layers(key):
|
144 |
+
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
145 |
+
|
146 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
147 |
+
|
148 |
+
# LayerNorm
|
149 |
+
def key_mapping_ln(key):
|
150 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
151 |
+
key = re.sub(
|
152 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
153 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
154 |
+
key,
|
155 |
+
)
|
156 |
+
key = re.sub(
|
157 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
158 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
159 |
+
key,
|
160 |
+
)
|
161 |
+
key = re.sub(
|
162 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
163 |
+
r"cls.predictions.transform.layer_norm.\1",
|
164 |
+
key,
|
165 |
+
)
|
166 |
+
return key
|
167 |
+
|
168 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
169 |
+
|
170 |
+
# MLP
|
171 |
+
def key_mapping_mlp(key):
|
172 |
+
key = re.sub(
|
173 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
174 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
175 |
+
key,
|
176 |
+
)
|
177 |
+
key = re.sub(
|
178 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
179 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
180 |
+
key,
|
181 |
+
)
|
182 |
+
return key
|
183 |
+
|
184 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
185 |
+
|
186 |
+
# Attention
|
187 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
188 |
+
for d in range(config.num_hidden_layers):
|
189 |
+
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
190 |
+
continue
|
191 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
192 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
193 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
194 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
195 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
196 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
197 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
198 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
199 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
200 |
+
else:
|
201 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
202 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
203 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
204 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
205 |
+
|
206 |
+
def key_mapping_attn(key):
|
207 |
+
return re.sub(
|
208 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
209 |
+
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
210 |
+
key,
|
211 |
+
)
|
212 |
+
|
213 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
214 |
+
|
215 |
+
def key_mapping_decoder_bias(key):
|
216 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
217 |
+
|
218 |
+
# remove nsp weights, we don't use
|
219 |
+
state_dict.pop("cls.seq_relationship.weight", None)
|
220 |
+
state_dict.pop("cls.seq_relationship.bias", None)
|
221 |
+
state_dict.pop("bert.embeddings.position_ids", None)
|
222 |
+
|
223 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
224 |
+
|
225 |
+
if remove_cls_weights:
|
226 |
+
cls_weights = [
|
227 |
+
"cls.predictions.decoder.bias",
|
228 |
+
"cls.predictions.transform.dense.weight",
|
229 |
+
"cls.predictions.transform.dense.bias",
|
230 |
+
"cls.predictions.transform.layer_norm.weight",
|
231 |
+
"cls.predictions.transform.layer_norm.bias",
|
232 |
+
"cls.predictions.decoder.weight",
|
233 |
+
]
|
234 |
+
for weight in cls_weights:
|
235 |
+
state_dict.pop(weight, None)
|
236 |
+
|
237 |
+
# Word embedding
|
238 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
239 |
+
if pad_vocab_size_multiple > 1:
|
240 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
241 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
242 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
243 |
+
)
|
244 |
+
if not remove_cls_weights:
|
245 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
246 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
247 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
248 |
+
)
|
249 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
250 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
251 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
252 |
+
if "cls.predictions.decoder.bias" in state_dict:
|
253 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
254 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
255 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
256 |
+
)
|
257 |
+
|
258 |
+
if add_pooling_layer is False:
|
259 |
+
pooler_weights = [
|
260 |
+
"bert.pooler.dense.weight",
|
261 |
+
"bert.pooler.dense.bias",
|
262 |
+
]
|
263 |
+
for key in pooler_weights:
|
264 |
+
state_dict.pop(key, None)
|
265 |
+
|
266 |
+
if remove_bert:
|
267 |
+
|
268 |
+
def remove_bert_prefix(key):
|
269 |
+
key = re.sub(r"^bert.", "", key)
|
270 |
+
return key
|
271 |
+
|
272 |
+
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
273 |
+
|
274 |
+
return state_dict
|
275 |
+
|
276 |
+
|
277 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
278 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
279 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
280 |
+
def norm_cdf(x):
|
281 |
+
# Computes standard normal cumulative distribution function
|
282 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
283 |
+
|
284 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
285 |
+
print("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
286 |
+
"The distribution of values may be incorrect.",
|
287 |
+
stacklevel=2)
|
288 |
+
|
289 |
+
# Values are generated by using a truncated uniform distribution and
|
290 |
+
# then using the inverse CDF for the normal distribution.
|
291 |
+
# Get upper and lower cdf values
|
292 |
+
l = norm_cdf((a - mean) / std)
|
293 |
+
u = norm_cdf((b - mean) / std)
|
294 |
+
|
295 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
296 |
+
# [2l-1, 2u-1].
|
297 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
298 |
+
|
299 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
300 |
+
# standard normal
|
301 |
+
tensor.erfinv_()
|
302 |
+
|
303 |
+
# Transform to proper mean, std
|
304 |
+
tensor.mul_(std * math.sqrt(2.))
|
305 |
+
tensor.add_(mean)
|
306 |
+
|
307 |
+
# Clamp to ensure it's in the proper range
|
308 |
+
tensor.clamp_(min=a, max=b)
|
309 |
+
return tensor
|
310 |
+
|
311 |
+
def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
|
312 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
313 |
+
normal distribution. The values are effectively drawn from the
|
314 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
315 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
316 |
+
the bounds. The method used for generating the random values works
|
317 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
318 |
+
|
319 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
320 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
321 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
tensor: an n-dimensional `torch.Tensor`
|
325 |
+
mean: the mean of the normal distribution
|
326 |
+
std: the standard deviation of the normal distribution
|
327 |
+
a: the minimum cutoff value
|
328 |
+
b: the maximum cutoff value
|
329 |
+
Examples:
|
330 |
+
>>> w = torch.empty(3, 5)
|
331 |
+
>>> nn.init.trunc_normal_(w)
|
332 |
+
"""
|
333 |
+
with torch.no_grad():
|
334 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
335 |
+
tensor.mul_(std).add_(mean)
|
336 |
+
return tensor
|
337 |
+
|
338 |
+
|
339 |
+
class NomicBertPreTrainedModel(PreTrainedModel):
|
340 |
+
"""An abstract class to handle weights initialization and
|
341 |
+
a simple interface for dowloading and loading pretrained models.
|
342 |
+
"""
|
343 |
+
|
344 |
+
config_class = NomicBertConfig
|
345 |
+
base_model_prefix = "model"
|
346 |
+
supports_gradient_checkpointing = True
|
347 |
+
_no_split_modules = ["Block"]
|
348 |
+
_skip_keys_device_placement = "past_key_values"
|
349 |
+
|
350 |
+
def __init__(self, config, *inputs, **kwargs):
|
351 |
+
super().__init__(config)
|
352 |
+
if not isinstance(config, GPT2Config):
|
353 |
+
raise ValueError(
|
354 |
+
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
355 |
+
"To create a model from a Google pretrained model use "
|
356 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
357 |
+
self.__class__.__name__, self.__class__.__name__
|
358 |
+
)
|
359 |
+
)
|
360 |
+
self.config = config
|
361 |
+
|
362 |
+
@classmethod
|
363 |
+
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
364 |
+
"""
|
365 |
+
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
366 |
+
Download and cache the pre-trained model file if needed.
|
367 |
+
|
368 |
+
Params:
|
369 |
+
pretrained_model_name_or_path: either:
|
370 |
+
- a path or url to a pretrained model archive containing:
|
371 |
+
. `bert_config.json` a configuration file for the model
|
372 |
+
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
373 |
+
- a path or url to a pretrained model archive containing:
|
374 |
+
. `bert_config.json` a configuration file for the model
|
375 |
+
. `model.chkpt` a TensorFlow checkpoint
|
376 |
+
*inputs, **kwargs: additional input for the specific NomicBert class
|
377 |
+
(ex: num_labels for NomicBertForSequenceClassification)
|
378 |
+
"""
|
379 |
+
# Instantiate model.
|
380 |
+
if config is None:
|
381 |
+
config = cls.config_class.from_pretrained(model_name)
|
382 |
+
remove_cls = cls != NomicBertForPreTraining
|
383 |
+
remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
|
384 |
+
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
385 |
+
num_labels = kwargs.pop("num_labels", None)
|
386 |
+
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
387 |
+
strict = kwargs.pop("strict", True)
|
388 |
+
if rotary_scaling_factor:
|
389 |
+
config.rotary_scaling_factor = rotary_scaling_factor
|
390 |
+
|
391 |
+
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
392 |
+
config.n_positions = 2048
|
393 |
+
if num_labels:
|
394 |
+
config.num_labels = num_labels
|
395 |
+
|
396 |
+
if "add_pooling_layer" in kwargs:
|
397 |
+
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
398 |
+
else:
|
399 |
+
if cls == NomicBertModel:
|
400 |
+
model = cls(config, *inputs, add_pooling_layer=False)
|
401 |
+
else:
|
402 |
+
model = cls(config, *inputs)
|
403 |
+
# TODO: fix this
|
404 |
+
# Assuming we know what we're doing when loading from disk
|
405 |
+
# Prob a bad assumption but i'm tired and want to train this asap
|
406 |
+
if os.path.exists(model_name):
|
407 |
+
model_path = f"{model_name}/pytorch_model.bin"
|
408 |
+
if os.path.exists(model_path):
|
409 |
+
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
410 |
+
else:
|
411 |
+
model_path = f"{model_name}/model.safetensors"
|
412 |
+
if not os.path.exists(model_path):
|
413 |
+
raise ValueError(f"Model path {model_path} not found")
|
414 |
+
state_dict = safe_load_file(model_path)
|
415 |
+
|
416 |
+
if ignore_mismatched_shapes:
|
417 |
+
state_dict = filter_shapes(state_dict, model)
|
418 |
+
load_return = model.load_state_dict(state_dict, strict=False)
|
419 |
+
else:
|
420 |
+
# TODO: can probably check config class and see if we need to remap from a bert model
|
421 |
+
state_dict = state_dict_from_pretrained(model_name)
|
422 |
+
state_dict = remap_bert_state_dict(
|
423 |
+
state_dict,
|
424 |
+
config,
|
425 |
+
remove_bert=remove_bert_prefix,
|
426 |
+
remove_cls_weights=remove_cls,
|
427 |
+
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
428 |
+
)
|
429 |
+
if ignore_mismatched_shapes:
|
430 |
+
state_dict = filter_shapes(state_dict, model)
|
431 |
+
|
432 |
+
load_return = model.load_state_dict(state_dict, strict=strict)
|
433 |
+
logger.warning(load_return)
|
434 |
+
return model
|
435 |
+
|
436 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
437 |
+
if isinstance(module, NomicBertEncoder):
|
438 |
+
module.gradient_checkpointing = value
|
439 |
+
|
440 |
+
|
441 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
442 |
+
def _init_weights(module, initializer_range=0.02):
|
443 |
+
if isinstance(module, nn.Linear):
|
444 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
445 |
+
if module.bias is not None:
|
446 |
+
nn.init.zeros_(module.bias)
|
447 |
+
elif isinstance(module, nn.Embedding):
|
448 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
449 |
+
if module.padding_idx is not None:
|
450 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
451 |
+
|
452 |
+
def _ntuple(n):
|
453 |
+
def parse(x):
|
454 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
455 |
+
return tuple(x)
|
456 |
+
return tuple(repeat(x, n))
|
457 |
+
return parse
|
458 |
+
|
459 |
+
|
460 |
+
to_1tuple = _ntuple(1)
|
461 |
+
to_2tuple = _ntuple(2)
|
462 |
+
to_3tuple = _ntuple(3)
|
463 |
+
to_4tuple = _ntuple(4)
|
464 |
+
to_ntuple = _ntuple
|
465 |
+
|
466 |
+
|
467 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
468 |
+
"""
|
469 |
+
Create 2D sin/cos positional embeddings.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
embed_dim (`int`):
|
473 |
+
Embedding dimension.
|
474 |
+
grid_size (`int`):
|
475 |
+
The grid height and width.
|
476 |
+
add_cls_token (`bool`, *optional*, defaults to `False`):
|
477 |
+
Whether or not to add a classification (CLS) token.
|
478 |
+
|
479 |
+
Returns:
|
480 |
+
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
|
481 |
+
position embeddings (with or without classification token)
|
482 |
+
"""
|
483 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
484 |
+
|
485 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
486 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
487 |
+
grid = np.stack(grid, axis=0)
|
488 |
+
|
489 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
490 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
491 |
+
if add_cls_token:
|
492 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
493 |
+
return pos_embed
|
494 |
+
|
495 |
+
|
496 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
497 |
+
if embed_dim % 2 != 0:
|
498 |
+
raise ValueError("embed_dim must be even")
|
499 |
+
|
500 |
+
# use half of dimensions to encode grid_h
|
501 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
502 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
503 |
+
|
504 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
505 |
+
return emb
|
506 |
+
|
507 |
+
|
508 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
509 |
+
"""
|
510 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
511 |
+
"""
|
512 |
+
if embed_dim % 2 != 0:
|
513 |
+
raise ValueError("embed_dim must be even")
|
514 |
+
|
515 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
516 |
+
omega /= embed_dim / 2.0
|
517 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
518 |
+
|
519 |
+
pos = pos.reshape(-1) # (M,)
|
520 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
521 |
+
|
522 |
+
emb_sin = np.sin(out) # (M, D/2)
|
523 |
+
emb_cos = np.cos(out) # (M, D/2)
|
524 |
+
|
525 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
526 |
+
return emb
|
527 |
+
|
528 |
+
def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]:
|
529 |
+
"""generate N-D grid in dimension order.
|
530 |
+
|
531 |
+
The ndgrid function is like meshgrid except that the order of the first two input arguments are switched.
|
532 |
+
|
533 |
+
That is, the statement
|
534 |
+
[X1,X2,X3] = ndgrid(x1,x2,x3)
|
535 |
+
|
536 |
+
produces the same result as
|
537 |
+
|
538 |
+
[X2,X1,X3] = meshgrid(x2,x1,x3)
|
539 |
+
|
540 |
+
This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make
|
541 |
+
torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy').
|
542 |
+
|
543 |
+
"""
|
544 |
+
try:
|
545 |
+
return torch.meshgrid(*tensors, indexing='ij')
|
546 |
+
except TypeError:
|
547 |
+
# old PyTorch < 1.10 will follow this path as it does not have indexing arg,
|
548 |
+
# the old behaviour of meshgrid was 'ij'
|
549 |
+
return torch.meshgrid(*tensors)
|
550 |
+
|
551 |
+
def build_fourier_pos_embed(
|
552 |
+
feat_shape: List[int],
|
553 |
+
bands: Optional[torch.Tensor] = None,
|
554 |
+
num_bands: int = 64,
|
555 |
+
max_res: int = 224,
|
556 |
+
temperature: float = 10000.,
|
557 |
+
linear_bands: bool = False,
|
558 |
+
include_grid: bool = False,
|
559 |
+
in_pixels: bool = True,
|
560 |
+
ref_feat_shape: Optional[List[int]] = None,
|
561 |
+
dtype: torch.dtype = torch.float32,
|
562 |
+
device: Optional[torch.device] = None,
|
563 |
+
) -> List[torch.Tensor]:
|
564 |
+
"""
|
565 |
+
|
566 |
+
Args:
|
567 |
+
feat_shape: Feature shape for embedding.
|
568 |
+
bands: Pre-calculated frequency bands.
|
569 |
+
num_bands: Number of frequency bands (determines output dim).
|
570 |
+
max_res: Maximum resolution for pixel based freq.
|
571 |
+
temperature: Temperature for non-pixel freq.
|
572 |
+
linear_bands: Linear band spacing for pixel based freq.
|
573 |
+
include_grid: Include the spatial grid in output.
|
574 |
+
in_pixels: Output in pixel freq.
|
575 |
+
ref_feat_shape: Reference feature shape for resize / fine-tune.
|
576 |
+
dtype: Output dtype.
|
577 |
+
device: Output device.
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
|
581 |
+
"""
|
582 |
+
if bands is None:
|
583 |
+
if in_pixels:
|
584 |
+
bands = pixel_freq_bands(
|
585 |
+
num_bands,
|
586 |
+
float(max_res),
|
587 |
+
linear_bands=linear_bands,
|
588 |
+
device=device,
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
bands = freq_bands(
|
592 |
+
num_bands,
|
593 |
+
temperature=temperature,
|
594 |
+
step=1,
|
595 |
+
device=device,
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
if device is None:
|
599 |
+
device = bands.device
|
600 |
+
if dtype is None:
|
601 |
+
dtype = bands.dtype
|
602 |
+
|
603 |
+
if in_pixels:
|
604 |
+
t = [torch.linspace(-1., 1., steps=s, device=device, dtype=torch.float32) for s in feat_shape]
|
605 |
+
else:
|
606 |
+
t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape]
|
607 |
+
|
608 |
+
if ref_feat_shape is not None:
|
609 |
+
# eva's scheme for resizing rope embeddings (ref shape = pretrain)
|
610 |
+
t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]
|
611 |
+
|
612 |
+
grid = torch.stack(ndgrid(t), dim=-1)
|
613 |
+
grid = grid.unsqueeze(-1)
|
614 |
+
pos = grid * bands
|
615 |
+
|
616 |
+
pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype)
|
617 |
+
out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
|
618 |
+
return out
|
619 |
+
|
620 |
+
|
621 |
+
def build_rotary_pos_embed(
|
622 |
+
feat_shape: List[int],
|
623 |
+
bands: Optional[torch.Tensor] = None,
|
624 |
+
dim: int = 64,
|
625 |
+
max_res: int = 224,
|
626 |
+
temperature: float = 10000.,
|
627 |
+
linear_bands: bool = False,
|
628 |
+
in_pixels: bool = True,
|
629 |
+
ref_feat_shape: Optional[List[int]] = None,
|
630 |
+
dtype: torch.dtype = torch.float32,
|
631 |
+
device: Optional[torch.device] = None,
|
632 |
+
):
|
633 |
+
"""
|
634 |
+
|
635 |
+
Args:
|
636 |
+
feat_shape: Spatial shape of the target tensor for embedding.
|
637 |
+
bands: Optional pre-generated frequency bands
|
638 |
+
dim: Output dimension of embedding tensor.
|
639 |
+
max_res: Maximum resolution for pixel mode.
|
640 |
+
temperature: Temperature (inv freq) for non-pixel mode
|
641 |
+
linear_bands: Linearly (instead of log) spaced bands for pixel mode
|
642 |
+
in_pixels: Pixel vs language (inv freq) mode.
|
643 |
+
dtype: Output dtype.
|
644 |
+
device: Output device.
|
645 |
+
|
646 |
+
Returns:
|
647 |
+
|
648 |
+
"""
|
649 |
+
sin_emb, cos_emb = build_fourier_pos_embed(
|
650 |
+
feat_shape,
|
651 |
+
bands=bands,
|
652 |
+
num_bands=dim // 4,
|
653 |
+
max_res=max_res,
|
654 |
+
temperature=temperature,
|
655 |
+
linear_bands=linear_bands,
|
656 |
+
in_pixels=in_pixels,
|
657 |
+
ref_feat_shape=ref_feat_shape,
|
658 |
+
device=device,
|
659 |
+
dtype=dtype,
|
660 |
+
)
|
661 |
+
num_spatial_dim = 1
|
662 |
+
# this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
|
663 |
+
for x in feat_shape:
|
664 |
+
num_spatial_dim *= x
|
665 |
+
sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
666 |
+
cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
|
667 |
+
return sin_emb, cos_emb
|
668 |
+
|
669 |
+
def freq_bands(
|
670 |
+
num_bands: int,
|
671 |
+
temperature: float = 10000.,
|
672 |
+
step: int = 2,
|
673 |
+
device: Optional[torch.device] = None,
|
674 |
+
) -> torch.Tensor:
|
675 |
+
exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands
|
676 |
+
bands = 1. / (temperature ** exp)
|
677 |
+
return bands
|
678 |
+
|
679 |
+
|
680 |
+
def pixel_freq_bands(
|
681 |
+
num_bands: int,
|
682 |
+
max_freq: float = 224.,
|
683 |
+
linear_bands: bool = True,
|
684 |
+
device: Optional[torch.device] = None,
|
685 |
+
):
|
686 |
+
if linear_bands:
|
687 |
+
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device)
|
688 |
+
else:
|
689 |
+
bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device)
|
690 |
+
return bands * torch.pi
|
691 |
+
|
692 |
+
def rot(x):
|
693 |
+
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
|
694 |
+
|
695 |
+
def apply_rot_embed_cat(x: torch.Tensor, emb):
|
696 |
+
sin_emb, cos_emb = emb.tensor_split(2, -1)
|
697 |
+
if sin_emb.ndim == 3:
|
698 |
+
return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
|
699 |
+
return x * cos_emb + rot(x) * sin_emb
|
700 |
+
|
701 |
+
# taken from https://github.com/huggingface/pytorch-image-models/blob/cb0e4391beedcc5ac3ae4bce16561b95c326f32c/timm/layers/pos_embed_sincos.py#L363
|
702 |
+
class NomicVisionRotaryEmbeddingCat(nn.Module):
|
703 |
+
""" Rotary position embedding w/ concatenatd sin & cos
|
704 |
+
|
705 |
+
The following impl/resources were referenced for this impl:
|
706 |
+
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
|
707 |
+
* https://blog.eleuther.ai/rotary-embeddings/
|
708 |
+
"""
|
709 |
+
|
710 |
+
def __init__(
|
711 |
+
self,
|
712 |
+
dim,
|
713 |
+
max_res=224,
|
714 |
+
temperature=10000,
|
715 |
+
in_pixels=True,
|
716 |
+
linear_bands: bool = False,
|
717 |
+
feat_shape: Optional[List[int]] = None,
|
718 |
+
ref_feat_shape: Optional[List[int]] = None,
|
719 |
+
):
|
720 |
+
super().__init__()
|
721 |
+
self.dim = dim
|
722 |
+
self.max_res = max_res
|
723 |
+
self.temperature = temperature
|
724 |
+
self.in_pixels = in_pixels
|
725 |
+
self.feat_shape = feat_shape
|
726 |
+
self.ref_feat_shape = ref_feat_shape
|
727 |
+
|
728 |
+
if feat_shape is None:
|
729 |
+
# only cache bands
|
730 |
+
if in_pixels:
|
731 |
+
bands = pixel_freq_bands(
|
732 |
+
dim // 4,
|
733 |
+
float(max_res),
|
734 |
+
linear_bands=linear_bands,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
bands = freq_bands(
|
738 |
+
dim // 4,
|
739 |
+
temperature=temperature,
|
740 |
+
step=1,
|
741 |
+
)
|
742 |
+
self.register_buffer(
|
743 |
+
'bands',
|
744 |
+
bands,
|
745 |
+
persistent=False,
|
746 |
+
)
|
747 |
+
self.pos_embed = None
|
748 |
+
else:
|
749 |
+
# cache full sin/cos embeddings if shape provided up front
|
750 |
+
embeds = build_rotary_pos_embed(
|
751 |
+
feat_shape=feat_shape,
|
752 |
+
dim=dim,
|
753 |
+
max_res=max_res,
|
754 |
+
linear_bands=linear_bands,
|
755 |
+
in_pixels=in_pixels,
|
756 |
+
ref_feat_shape=self.ref_feat_shape,
|
757 |
+
)
|
758 |
+
self.bands = None
|
759 |
+
self.register_buffer(
|
760 |
+
'pos_embed',
|
761 |
+
torch.cat(embeds, -1),
|
762 |
+
persistent=False,
|
763 |
+
)
|
764 |
+
|
765 |
+
def get_embed(self, shape: Optional[List[int]] = None):
|
766 |
+
if self.bands is not None and shape is not None:
|
767 |
+
# rebuild embeddings every call, use if target shape changes
|
768 |
+
embeds = build_rotary_pos_embed(
|
769 |
+
shape,
|
770 |
+
self.bands,
|
771 |
+
in_pixels=self.in_pixels,
|
772 |
+
ref_feat_shape=self.ref_feat_shape,
|
773 |
+
)
|
774 |
+
return torch.cat(embeds, -1)
|
775 |
+
elif self.pos_embed is not None:
|
776 |
+
return self.pos_embed
|
777 |
+
else:
|
778 |
+
assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands"
|
779 |
+
|
780 |
+
def forward(self, x):
|
781 |
+
# assuming channel-first tensor where spatial dim are >= 2
|
782 |
+
pos_embed = self.get_embed(x.shape[2:])
|
783 |
+
return apply_rot_embed_cat(x, pos_embed)
|
784 |
+
|
785 |
+
class NomicVisionPatchEmbeddings(nn.Module):
|
786 |
+
def __init__(
|
787 |
+
self,
|
788 |
+
config,
|
789 |
+
):
|
790 |
+
super().__init__()
|
791 |
+
img_size = _pair(config.img_size)
|
792 |
+
patch_size = _pair(config.patch_size)
|
793 |
+
self.img_size = img_size
|
794 |
+
self.patch_size = patch_size
|
795 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
796 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
797 |
+
|
798 |
+
self.proj = nn.Linear(
|
799 |
+
config.num_channels * patch_size[0] * patch_size[1], config.n_embd, bias=config.patch_embed_bias
|
800 |
+
)
|
801 |
+
|
802 |
+
self.learned_pos_embedding = False
|
803 |
+
self.sinusoidal_pos_embedding = False
|
804 |
+
self.no_embed_class = getattr(config, "no_embed_class", False)
|
805 |
+
|
806 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.n_embd)) if not getattr(config, "no_cls_token", False) else None
|
807 |
+
if config.learned_pos_embedding:
|
808 |
+
# this is the default in DINO
|
809 |
+
self.learned_pos_embedding = True
|
810 |
+
# hack for timm dinov2 with registers
|
811 |
+
num_patches = self.num_patches if getattr(config, "register_tokens", 0) > 0 else self.num_patches + 1
|
812 |
+
self.pos_embed = nn.Parameter(torch.randn(1, num_patches, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
|
813 |
+
elif getattr(config, "sinusoidal_pos_embedding", False):
|
814 |
+
self.sinusoidal_pos_embedding = True
|
815 |
+
if getattr(config, "use_pos_embed", True):
|
816 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, config.n_embd), requires_grad=False)
|
817 |
+
pos_embed = get_2d_sincos_pos_embed(config.n_embd, self.grid_size[0], add_cls_token=True)
|
818 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).to(self.pos_embed))
|
819 |
+
else:
|
820 |
+
self.pos_embed = None
|
821 |
+
else:
|
822 |
+
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches + 1, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
|
823 |
+
|
824 |
+
if getattr(config, "register_tokens", 0) > 0:
|
825 |
+
self.reg_token = nn.Parameter(torch.randn(1, config.register_tokens, config.n_embd) * 0.02)
|
826 |
+
else:
|
827 |
+
self.reg_token = None
|
828 |
+
|
829 |
+
if config.mask_token:
|
830 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.n_embd))
|
831 |
+
|
832 |
+
self.patch_dropout = nn.Identity()
|
833 |
+
|
834 |
+
if getattr(config, "use_rotary_pos_emb", False):
|
835 |
+
ref_feat_shape = getattr(config, "ref_feat_shape", None)
|
836 |
+
ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
|
837 |
+
self.rope = NomicVisionRotaryEmbeddingCat(
|
838 |
+
config.n_embd // config.n_head,
|
839 |
+
in_pixels=False,
|
840 |
+
feat_shape=self.grid_size,
|
841 |
+
ref_feat_shape=ref_feat_shape,
|
842 |
+
)
|
843 |
+
else:
|
844 |
+
self.rope = None
|
845 |
+
|
846 |
+
|
847 |
+
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
848 |
+
"""
|
849 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
850 |
+
resolution images.
|
851 |
+
|
852 |
+
Source:
|
853 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
854 |
+
"""
|
855 |
+
num_patches = embeddings.shape[1] - 1
|
856 |
+
num_positions = self.pos_embed.shape[1] - 1
|
857 |
+
if num_patches == num_positions and height == width:
|
858 |
+
return self.pos_embed
|
859 |
+
class_pos_embed = self.pos_embed[:, 0]
|
860 |
+
patch_pos_embed = self.pos_embed[:, 1:]
|
861 |
+
dim = embeddings.shape[-1]
|
862 |
+
height = height // self.patch_size[0]
|
863 |
+
width = width // self.patch_size[1]
|
864 |
+
# we add a small number to avoid floating point error in the interpolation
|
865 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
866 |
+
height, width = height + 0.1, width + 0.1
|
867 |
+
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
|
868 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
869 |
+
patch_pos_embed = nn.functional.interpolate(
|
870 |
+
patch_pos_embed,
|
871 |
+
scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
|
872 |
+
mode="bicubic",
|
873 |
+
align_corners=False,
|
874 |
+
)
|
875 |
+
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
|
876 |
+
raise ValueError("Width or height does not match with the interpolated position embeddings")
|
877 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
878 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
879 |
+
|
880 |
+
def forward(self, x):
|
881 |
+
# deepspeed case where the input is in fp32
|
882 |
+
if x.dtype != self.proj.weight.dtype:
|
883 |
+
x = x.to(dtype=self.proj.weight.dtype)
|
884 |
+
|
885 |
+
_, _, height, width = x.shape
|
886 |
+
x = self.proj(
|
887 |
+
rearrange(
|
888 |
+
x,
|
889 |
+
"b c (h p1) (w p2) -> b h w (c p1 p2)",
|
890 |
+
p1=self.patch_size[0],
|
891 |
+
p2=self.patch_size[1],
|
892 |
+
)
|
893 |
+
)
|
894 |
+
embeddings = rearrange(x, "b h w c -> b (h w) c")
|
895 |
+
|
896 |
+
to_cat = []
|
897 |
+
if self.cls_token is not None:
|
898 |
+
if self.sinusoidal_pos_embedding:
|
899 |
+
cls_token = self.cls_token + self.pos_embed[:, 0]
|
900 |
+
cls_token = cls_token.expand(embeddings.shape[0], -1, -1)
|
901 |
+
to_cat += [cls_token]
|
902 |
+
else:
|
903 |
+
cls_token = self.cls_token.expand(embeddings.shape[0], 1, -1)
|
904 |
+
to_cat += [cls_token]
|
905 |
+
|
906 |
+
if self.reg_token is not None:
|
907 |
+
to_cat += [self.reg_token.expand(embeddings.shape[0], -1, -1)]
|
908 |
+
|
909 |
+
rot_pos_embed = self.rope.get_embed() if self.rope is not None else None
|
910 |
+
|
911 |
+
if self.no_embed_class:
|
912 |
+
if self.learned_pos_embedding:
|
913 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
914 |
+
else:
|
915 |
+
if self.pos_embed is not None:
|
916 |
+
embeddings = embeddings + self.pos_embed
|
917 |
+
if to_cat:
|
918 |
+
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
919 |
+
else:
|
920 |
+
if to_cat:
|
921 |
+
embeddings = torch.cat(to_cat + [embeddings], dim=1)
|
922 |
+
if self.learned_pos_embedding:
|
923 |
+
if self.pos_embed is not None:
|
924 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
925 |
+
else:
|
926 |
+
if self.pos_embed is not None:
|
927 |
+
embeddings = embeddings + self.pos_embed
|
928 |
+
|
929 |
+
embeddings = self.patch_dropout(embeddings)
|
930 |
+
|
931 |
+
return embeddings, rot_pos_embed
|
932 |
+
|
933 |
+
|
934 |
+
class NomicBertEmbeddings(nn.Module):
|
935 |
+
def __init__(self, config):
|
936 |
+
"""
|
937 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
938 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
939 |
+
"""
|
940 |
+
super().__init__()
|
941 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
942 |
+
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
943 |
+
self.type_vocab_size = config.type_vocab_size
|
944 |
+
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
945 |
+
self.position_embeddings = nn.Embedding(
|
946 |
+
config.max_position_embeddings,
|
947 |
+
config.hidden_size,
|
948 |
+
)
|
949 |
+
if self.type_vocab_size > 0:
|
950 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
951 |
+
|
952 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
953 |
+
"""
|
954 |
+
input_ids: (batch, seqlen)
|
955 |
+
position_ids: (batch, seqlen)
|
956 |
+
token_type_ids: (batch, seqlen)
|
957 |
+
"""
|
958 |
+
batch_size, seqlen = input_ids.shape
|
959 |
+
embeddings = self.word_embeddings(input_ids)
|
960 |
+
|
961 |
+
if self.type_vocab_size > 0:
|
962 |
+
if token_type_ids is None:
|
963 |
+
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
964 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
965 |
+
embeddings = embeddings + token_type_embeddings
|
966 |
+
|
967 |
+
if self.max_position_embeddings > 0:
|
968 |
+
if position_ids is None:
|
969 |
+
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
970 |
+
position_embeddings = self.position_embeddings(position_ids)
|
971 |
+
embeddings = embeddings + position_embeddings
|
972 |
+
return embeddings
|
973 |
+
|
974 |
+
|
975 |
+
class NomicBertMLP(nn.Module):
|
976 |
+
def __init__(
|
977 |
+
self,
|
978 |
+
in_features,
|
979 |
+
hidden_features=None,
|
980 |
+
out_features=None,
|
981 |
+
activation=F.gelu,
|
982 |
+
bias1=True,
|
983 |
+
bias2=True,
|
984 |
+
return_residual=False,
|
985 |
+
fused_bias_fc=False,
|
986 |
+
):
|
987 |
+
super().__init__()
|
988 |
+
out_features = out_features if out_features is not None else in_features
|
989 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
990 |
+
self.return_residual = return_residual
|
991 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
992 |
+
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
993 |
+
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
994 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
995 |
+
|
996 |
+
def forward(self, x):
|
997 |
+
y = self.fc1(x)
|
998 |
+
y = self.activation(y)
|
999 |
+
y = self.fc2(y)
|
1000 |
+
return y if not self.return_residual else (y, x)
|
1001 |
+
|
1002 |
+
|
1003 |
+
class NomciBertGatedMLP(nn.Module):
|
1004 |
+
def __init__(
|
1005 |
+
self,
|
1006 |
+
in_features,
|
1007 |
+
hidden_features=None,
|
1008 |
+
out_features=None,
|
1009 |
+
activation=F.sigmoid,
|
1010 |
+
bias1=True,
|
1011 |
+
bias2=True,
|
1012 |
+
multiple_of=256,
|
1013 |
+
return_residual=False,
|
1014 |
+
fused_bias_fc=True,
|
1015 |
+
device=None,
|
1016 |
+
dtype=None,
|
1017 |
+
norm_layer=False,
|
1018 |
+
):
|
1019 |
+
super().__init__()
|
1020 |
+
out_features = out_features if out_features is not None else in_features
|
1021 |
+
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
1022 |
+
hidden_features = int((hidden_features + multiple_of - 1) // multiple_of * multiple_of)
|
1023 |
+
self.return_residual = return_residual
|
1024 |
+
|
1025 |
+
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
1026 |
+
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
1027 |
+
self.activation = activation
|
1028 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
1029 |
+
self.norm = nn.LayerNorm(hidden_features) if norm_layer else nn.Identity()
|
1030 |
+
|
1031 |
+
def forward(self, x):
|
1032 |
+
y = self.fc11(x)
|
1033 |
+
gate = self.fc12(x)
|
1034 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
1035 |
+
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
1036 |
+
else:
|
1037 |
+
y = y * self.activation(gate)
|
1038 |
+
|
1039 |
+
# eva uses layer norm after the activation
|
1040 |
+
y = self.norm(y)
|
1041 |
+
|
1042 |
+
y = self.fc2(y)
|
1043 |
+
return y if not self.return_residual else (y, x)
|
1044 |
+
|
1045 |
+
|
1046 |
+
def rotate_half(x, interleaved=False):
|
1047 |
+
if not interleaved:
|
1048 |
+
x1, x2 = x.chunk(2, dim=-1)
|
1049 |
+
return torch.cat((-x2, x1), dim=-1)
|
1050 |
+
else:
|
1051 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
1052 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
1053 |
+
|
1054 |
+
|
1055 |
+
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
1056 |
+
"""
|
1057 |
+
x: (batch_size, seqlen, nheads, headdim)
|
1058 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
1059 |
+
"""
|
1060 |
+
ro_dim = cos.shape[-1] * 2
|
1061 |
+
assert ro_dim <= x.shape[-1]
|
1062 |
+
cos, sin = (
|
1063 |
+
cos[offset : offset + x.shape[1]],
|
1064 |
+
sin[offset : offset + x.shape[1]],
|
1065 |
+
)
|
1066 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
1067 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
1068 |
+
return torch.cat(
|
1069 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
1070 |
+
dim=-1,
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
|
1074 |
+
class NomicBertRotaryEmbedding(nn.Module):
|
1075 |
+
def __init__(
|
1076 |
+
self,
|
1077 |
+
dim: int,
|
1078 |
+
base=10000.0,
|
1079 |
+
interleaved=False,
|
1080 |
+
scale_base=None,
|
1081 |
+
pos_idx_in_fp32=True,
|
1082 |
+
device=None,
|
1083 |
+
):
|
1084 |
+
"""
|
1085 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
1086 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
1087 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
1088 |
+
otherwise they might be in lower precision.
|
1089 |
+
This option was added because previously (before 2023-07-02), when we construct
|
1090 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
1091 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
1092 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
1093 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
1094 |
+
embeddings for some positions will coincide.
|
1095 |
+
To maintain compatibility with models previously trained in pure bf16,
|
1096 |
+
we add this option.
|
1097 |
+
"""
|
1098 |
+
super().__init__()
|
1099 |
+
self.dim = dim
|
1100 |
+
self.base = float(base)
|
1101 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
1102 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
1103 |
+
inv_freq = self._compute_inv_freq(device)
|
1104 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
1105 |
+
self.interleaved = interleaved
|
1106 |
+
self.scale_base = scale_base
|
1107 |
+
scale = (
|
1108 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
1109 |
+
if scale_base is not None
|
1110 |
+
else None
|
1111 |
+
)
|
1112 |
+
self.register_buffer("scale", scale, persistent=False)
|
1113 |
+
|
1114 |
+
self._seq_len_cached = 0
|
1115 |
+
self._cos_cached = None
|
1116 |
+
self._sin_cached = None
|
1117 |
+
self._cos_k_cached = None
|
1118 |
+
self._sin_k_cached = None
|
1119 |
+
|
1120 |
+
def _compute_inv_freq(self, device=None):
|
1121 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
1122 |
+
|
1123 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
1124 |
+
# Reset the tables if the sequence length has changed,
|
1125 |
+
# if we're on a new device (possibly due to tracing for instance),
|
1126 |
+
# or if we're switching from inference mode to training
|
1127 |
+
if (
|
1128 |
+
seqlen > self._seq_len_cached
|
1129 |
+
or self._cos_cached is None
|
1130 |
+
or self._cos_cached.device != device
|
1131 |
+
or self._cos_cached.dtype != dtype
|
1132 |
+
or (self.training and self._cos_cached.is_inference())
|
1133 |
+
):
|
1134 |
+
self._seq_len_cached = seqlen
|
1135 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
1136 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
1137 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
1138 |
+
if self.pos_idx_in_fp32:
|
1139 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
1140 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
1141 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
1142 |
+
# cos & sin output to change significantly.
|
1143 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
1144 |
+
if self.inv_freq.dtype != torch.float32:
|
1145 |
+
inv_freq = self._compute_inv_freq(device=device)
|
1146 |
+
else:
|
1147 |
+
inv_freq = self.inv_freq
|
1148 |
+
else:
|
1149 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
1150 |
+
inv_freq = self.inv_freq
|
1151 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
1152 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
1153 |
+
freqs = torch.outer(t, inv_freq)
|
1154 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
1155 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
1156 |
+
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
qkv: torch.Tensor,
|
1160 |
+
kv: Optional[torch.Tensor] = None,
|
1161 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
1162 |
+
max_seqlen: Optional[int] = None,
|
1163 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1164 |
+
"""
|
1165 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
1166 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
1167 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
1168 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
1169 |
+
Most commonly used in inference when we have KV cache.
|
1170 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
1171 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
1172 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
1173 |
+
"""
|
1174 |
+
seqlen = qkv.shape[1]
|
1175 |
+
if seqlen > self._seq_len_cached:
|
1176 |
+
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
1177 |
+
elif max_seqlen is not None:
|
1178 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
1179 |
+
elif isinstance(seqlen_offset, int):
|
1180 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
1181 |
+
|
1182 |
+
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
1183 |
+
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
1184 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
1185 |
+
|
1186 |
+
|
1187 |
+
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
1188 |
+
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
1189 |
+
super().__init__(**kwargs)
|
1190 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
1191 |
+
self.max_position_embeddings = max_position_embeddings
|
1192 |
+
|
1193 |
+
def _compute_inv_freq(self, base=None, device=None):
|
1194 |
+
if base is None:
|
1195 |
+
base = self.base
|
1196 |
+
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
1197 |
+
|
1198 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
1199 |
+
# Reset the tables if the sequence length has changed,
|
1200 |
+
# if we're on a new device (possibly due to tracing for instance),
|
1201 |
+
# or if we're switching from inference mode to training
|
1202 |
+
if seqlen > self.max_position_embeddings:
|
1203 |
+
base = self.base * (
|
1204 |
+
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
1205 |
+
) ** (self.dim / (self.dim - 2))
|
1206 |
+
inv_freq = self._compute_inv_freq(base=base, device=device)
|
1207 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
1208 |
+
|
1209 |
+
if (
|
1210 |
+
seqlen > self._seq_len_cached
|
1211 |
+
or self._cos_cached is None
|
1212 |
+
or self._cos_cached.device != device
|
1213 |
+
or self._cos_cached.dtype != dtype
|
1214 |
+
or (self.training and self._cos_cached.is_inference())
|
1215 |
+
):
|
1216 |
+
self._seq_len_cached = seqlen
|
1217 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
1218 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
1219 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
1220 |
+
if self.pos_idx_in_fp32:
|
1221 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
1222 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
1223 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
1224 |
+
# cos & sin output to change significantly.
|
1225 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
1226 |
+
if self.inv_freq.dtype != torch.float32:
|
1227 |
+
if seqlen > self.max_position_embeddings:
|
1228 |
+
base = self.base * (
|
1229 |
+
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
1230 |
+
) ** (self.dim / (self.dim - 2))
|
1231 |
+
else:
|
1232 |
+
base = self.base
|
1233 |
+
inv_freq = self._compute_inv_freq(device=device, base=base)
|
1234 |
+
else:
|
1235 |
+
inv_freq = self.inv_freq
|
1236 |
+
else:
|
1237 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
1238 |
+
inv_freq = self.inv_freq
|
1239 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
1240 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
1241 |
+
freqs = torch.outer(t, inv_freq)
|
1242 |
+
if self.scale is None:
|
1243 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
1244 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
1245 |
+
else:
|
1246 |
+
power = (
|
1247 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
1248 |
+
) / self.scale_base
|
1249 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
1250 |
+
# We want the multiplication by scale to happen in fp32
|
1251 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
1252 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
1253 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
1254 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
1255 |
+
|
1256 |
+
|
1257 |
+
class NomicBertAttention(nn.Module):
|
1258 |
+
"""Multi-head self-attention and cross-attention"""
|
1259 |
+
|
1260 |
+
def __init__(
|
1261 |
+
self,
|
1262 |
+
config,
|
1263 |
+
) -> None:
|
1264 |
+
"""
|
1265 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
1266 |
+
return_residual: whether to return the input x along with the output. This is for
|
1267 |
+
performance reason: for post-norm architecture, returning the input allows us
|
1268 |
+
to fuse the backward of nn.Linear with the residual connection.
|
1269 |
+
"""
|
1270 |
+
super().__init__()
|
1271 |
+
self.embed_dim = config.n_embd
|
1272 |
+
self.use_flash_attn = config.use_flash_attn
|
1273 |
+
self.fused_bias_fc = config.fused_bias_fc
|
1274 |
+
|
1275 |
+
self.num_heads = config.n_head
|
1276 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
1277 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
1278 |
+
self.head_dim = self.embed_dim // self.num_heads
|
1279 |
+
# we don't really support mqa / gqa for now
|
1280 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
1281 |
+
|
1282 |
+
self.register_buffer(
|
1283 |
+
"norm_factor",
|
1284 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
1285 |
+
persistent=False,
|
1286 |
+
)
|
1287 |
+
|
1288 |
+
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
1289 |
+
if self.rotary_emb_dim > 0:
|
1290 |
+
if getattr(config, "rotary_scaling_factor", None):
|
1291 |
+
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
1292 |
+
dim=self.rotary_emb_dim,
|
1293 |
+
base=config.rotary_emb_base,
|
1294 |
+
scale_base=config.rotary_emb_scale_base,
|
1295 |
+
interleaved=config.rotary_emb_interleaved,
|
1296 |
+
rotary_scaling_factor=config.rotary_scaling_factor,
|
1297 |
+
max_position_embeddings=config.max_trained_positions,
|
1298 |
+
)
|
1299 |
+
else:
|
1300 |
+
self.rotary_emb = NomicBertRotaryEmbedding(
|
1301 |
+
dim=self.rotary_emb_dim,
|
1302 |
+
base=config.rotary_emb_base,
|
1303 |
+
scale_base=config.rotary_emb_scale_base,
|
1304 |
+
interleaved=config.rotary_emb_interleaved,
|
1305 |
+
)
|
1306 |
+
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
1307 |
+
# uses the head dimension instead of the sequence dimension
|
1308 |
+
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
1309 |
+
|
1310 |
+
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
1311 |
+
|
1312 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1313 |
+
self.causal = config.causal
|
1314 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
1315 |
+
self.num_prefix_tokens = max(getattr(config, "register_tokens", 1), 1)
|
1316 |
+
|
1317 |
+
def forward(
|
1318 |
+
self,
|
1319 |
+
hidden_states: torch.Tensor,
|
1320 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1321 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1322 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1323 |
+
output_attentions: bool = False,
|
1324 |
+
use_cache: bool = False,
|
1325 |
+
is_padded_inputs: Optional[bool] = True,
|
1326 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1327 |
+
max_seq_len: Optional[int] = None,
|
1328 |
+
rope: Optional[torch.Tensor] = None,
|
1329 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1330 |
+
|
1331 |
+
has_layer_past = past_key_value is not None
|
1332 |
+
|
1333 |
+
if has_layer_past:
|
1334 |
+
past_key_value = past_key_value[0]
|
1335 |
+
past_len = past_key_value[1]
|
1336 |
+
else:
|
1337 |
+
past_len = 0
|
1338 |
+
|
1339 |
+
qkv = self.Wqkv(hidden_states)
|
1340 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
1341 |
+
|
1342 |
+
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
1343 |
+
|
1344 |
+
if self.rotary_emb_dim > 0:
|
1345 |
+
if self.rotary_head_dim:
|
1346 |
+
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
1347 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
1348 |
+
|
1349 |
+
if self.rotary_head_dim:
|
1350 |
+
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
1351 |
+
elif rope is not None:
|
1352 |
+
q, k, v = qkv.permute(0, 3, 1, 2, 4).unbind(dim=-2)
|
1353 |
+
q = torch.cat([q[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(q[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
|
1354 |
+
k = torch.cat([k[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(k[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
|
1355 |
+
|
1356 |
+
qkv = torch.stack([q, k, v], dim=-2)
|
1357 |
+
qkv = rearrange(qkv, "b h s three d -> b s three h d")
|
1358 |
+
|
1359 |
+
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
1360 |
+
|
1361 |
+
query = query.permute(0, 2, 1, 3)
|
1362 |
+
key = key.permute(0, 2, 1, 3)
|
1363 |
+
value = value.permute(0, 2, 1, 3)
|
1364 |
+
|
1365 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
1366 |
+
if attention_mask is not None:
|
1367 |
+
attention_scores = attention_scores + attention_mask
|
1368 |
+
|
1369 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
1370 |
+
attentions_probs = self.drop(attentions_probs)
|
1371 |
+
|
1372 |
+
attn_output = torch.matmul(attentions_probs, value)
|
1373 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
1374 |
+
|
1375 |
+
attn_output = self.out_proj(attn_output)
|
1376 |
+
|
1377 |
+
return attn_output
|
1378 |
+
|
1379 |
+
|
1380 |
+
class NomicBertBlock(NomicBertPreTrainedModel):
|
1381 |
+
def __init__(
|
1382 |
+
self,
|
1383 |
+
config,
|
1384 |
+
):
|
1385 |
+
super().__init__(config=config)
|
1386 |
+
self.prenorm = config.prenorm
|
1387 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
1388 |
+
|
1389 |
+
self.attn = NomicBertAttention(config)
|
1390 |
+
activation = (
|
1391 |
+
F.sigmoid
|
1392 |
+
if config.activation_function == "glu"
|
1393 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
1394 |
+
)
|
1395 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
1396 |
+
self.mlp = NomciBertGatedMLP(
|
1397 |
+
config.n_embd,
|
1398 |
+
hidden_features=config.n_inner,
|
1399 |
+
bias1=config.mlp_fc1_bias,
|
1400 |
+
bias2=config.mlp_fc2_bias,
|
1401 |
+
activation=activation,
|
1402 |
+
fused_bias_fc=config.fused_bias_fc,
|
1403 |
+
norm_layer=getattr(config, "norm_mlp", False),
|
1404 |
+
)
|
1405 |
+
else:
|
1406 |
+
self.mlp = NomicBertMLP(
|
1407 |
+
config.n_embd,
|
1408 |
+
hidden_features=config.n_inner,
|
1409 |
+
bias1=config.mlp_fc1_bias,
|
1410 |
+
bias2=config.mlp_fc2_bias,
|
1411 |
+
activation=activation,
|
1412 |
+
fused_bias_fc=config.fused_bias_fc,
|
1413 |
+
)
|
1414 |
+
|
1415 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
1416 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1417 |
+
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1418 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
1419 |
+
|
1420 |
+
def forward(
|
1421 |
+
self,
|
1422 |
+
hidden_states: torch.Tensor,
|
1423 |
+
hidden_states2: torch.Tensor,
|
1424 |
+
residual: Optional[torch.Tensor] = None,
|
1425 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1426 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1427 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1428 |
+
is_padded_inputs: Optional[bool] = True,
|
1429 |
+
output_attentions: Optional[bool] = False,
|
1430 |
+
use_cache: Optional[bool] = False,
|
1431 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
1432 |
+
max_seq_len: Optional[int] = None,
|
1433 |
+
rope: Optional[torch.Tensor] = None,
|
1434 |
+
):
|
1435 |
+
r"""Pass the input through the encoder layer.
|
1436 |
+
|
1437 |
+
Args:
|
1438 |
+
hidden_states: the sequence to the encoder layer (required).
|
1439 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
1440 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
1441 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
1442 |
+
about the CLS token in the last layer.
|
1443 |
+
"""
|
1444 |
+
if self.prenorm:
|
1445 |
+
dropped = self.dropout1(hidden_states)
|
1446 |
+
residual = (dropped + residual) if residual is not None else dropped
|
1447 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
1448 |
+
hidden_states = self.attn(
|
1449 |
+
hidden_states,
|
1450 |
+
attention_mask=attention_mask,
|
1451 |
+
is_padded_inputs=is_padded_inputs,
|
1452 |
+
cu_seqlens=cu_seqlens,
|
1453 |
+
max_seq_len=max_seq_len,
|
1454 |
+
rope=rope,
|
1455 |
+
)
|
1456 |
+
|
1457 |
+
dropped = self.dropout2(hidden_states)
|
1458 |
+
residual = (dropped + residual) if residual is not None else dropped
|
1459 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
1460 |
+
hidden_states = self.mlp(hidden_states)
|
1461 |
+
|
1462 |
+
return hidden_states, None, residual
|
1463 |
+
else:
|
1464 |
+
assert residual is None
|
1465 |
+
attn_outputs = self.attn(
|
1466 |
+
hidden_states,
|
1467 |
+
attention_mask=attention_mask,
|
1468 |
+
is_padded_inputs=is_padded_inputs,
|
1469 |
+
cu_seqlens=cu_seqlens,
|
1470 |
+
max_seq_len=max_seq_len,
|
1471 |
+
rope=rope,
|
1472 |
+
)
|
1473 |
+
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
1474 |
+
mlp_out = self.mlp(hidden_states)
|
1475 |
+
|
1476 |
+
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
1477 |
+
return hidden_states, None, None
|
1478 |
+
|
1479 |
+
|
1480 |
+
class NomicBertEncoder(nn.Module):
|
1481 |
+
def __init__(self, config: GPT2Config):
|
1482 |
+
super().__init__()
|
1483 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
1484 |
+
self.gradient_checkpointing = False
|
1485 |
+
self.config = config
|
1486 |
+
|
1487 |
+
def forward(
|
1488 |
+
self,
|
1489 |
+
hidden_states: torch.LongTensor = None,
|
1490 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1491 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1492 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1493 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1494 |
+
use_cache: Optional[bool] = None,
|
1495 |
+
output_attentions: Optional[bool] = None,
|
1496 |
+
output_hidden_states: Optional[bool] = None,
|
1497 |
+
return_dict: Optional[bool] = None,
|
1498 |
+
is_padded_inputs: Optional[bool] = True,
|
1499 |
+
rope: Optional[torch.Tensor] = None,
|
1500 |
+
):
|
1501 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
1502 |
+
This means that we only compute the last layer output for these tokens.
|
1503 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
1504 |
+
"""
|
1505 |
+
hidden_states2 = None
|
1506 |
+
residual = None
|
1507 |
+
|
1508 |
+
for _, layer in enumerate(self.layers):
|
1509 |
+
if self.gradient_checkpointing and self.training:
|
1510 |
+
|
1511 |
+
def create_custom_forward(module):
|
1512 |
+
def custom_forward(*inputs):
|
1513 |
+
# None for past_key_value
|
1514 |
+
return module(*inputs)
|
1515 |
+
|
1516 |
+
return custom_forward
|
1517 |
+
|
1518 |
+
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
1519 |
+
create_custom_forward(layer),
|
1520 |
+
hidden_states,
|
1521 |
+
hidden_states2,
|
1522 |
+
residual,
|
1523 |
+
attention_mask,
|
1524 |
+
position_ids,
|
1525 |
+
past_key_values,
|
1526 |
+
is_padded_inputs,
|
1527 |
+
output_attentions,
|
1528 |
+
use_cache,
|
1529 |
+
None,
|
1530 |
+
None,
|
1531 |
+
rope,
|
1532 |
+
# if you freeze ANY layers, you need `use_reentrant=False`
|
1533 |
+
# https://github.com/huggingface/transformers/issues/21381
|
1534 |
+
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
1535 |
+
use_reentrant=False,
|
1536 |
+
)
|
1537 |
+
|
1538 |
+
else:
|
1539 |
+
hidden_states, hidden_states2, residual = layer(
|
1540 |
+
hidden_states,
|
1541 |
+
hidden_states2,
|
1542 |
+
residual,
|
1543 |
+
attention_mask,
|
1544 |
+
position_ids,
|
1545 |
+
None,
|
1546 |
+
is_padded_inputs,
|
1547 |
+
output_attentions,
|
1548 |
+
use_cache,
|
1549 |
+
rope=rope,
|
1550 |
+
)
|
1551 |
+
return hidden_states
|
1552 |
+
|
1553 |
+
|
1554 |
+
class NomicBertPooler(nn.Module):
|
1555 |
+
def __init__(self, config):
|
1556 |
+
super().__init__()
|
1557 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
1558 |
+
self.activation = nn.Tanh()
|
1559 |
+
|
1560 |
+
def forward(self, hidden_states, pool=True):
|
1561 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
1562 |
+
# to the first token.
|
1563 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
1564 |
+
pooled_output = self.dense(first_token_tensor)
|
1565 |
+
pooled_output = self.activation(pooled_output)
|
1566 |
+
return pooled_output
|
1567 |
+
|
1568 |
+
|
1569 |
+
class NomicBertPredictionHeadTransform(nn.Module):
|
1570 |
+
def __init__(self, config):
|
1571 |
+
super().__init__()
|
1572 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
1573 |
+
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
1574 |
+
if config.activation_function == "swiglu":
|
1575 |
+
self.transform_act_fn = F.silu
|
1576 |
+
else:
|
1577 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
1578 |
+
|
1579 |
+
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1580 |
+
|
1581 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1582 |
+
hidden_states = self.dense(hidden_states)
|
1583 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1584 |
+
hidden_states = self.layer_norm(hidden_states)
|
1585 |
+
|
1586 |
+
return hidden_states
|
1587 |
+
|
1588 |
+
|
1589 |
+
class NomicBertLMPredictionHead(nn.Module):
|
1590 |
+
def __init__(self, config):
|
1591 |
+
super().__init__()
|
1592 |
+
|
1593 |
+
self.transform = NomicBertPredictionHeadTransform(config)
|
1594 |
+
|
1595 |
+
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
1596 |
+
|
1597 |
+
def forward(self, hidden_states):
|
1598 |
+
hidden_states = self.transform(hidden_states)
|
1599 |
+
hidden_states = self.decoder(hidden_states)
|
1600 |
+
return hidden_states
|
1601 |
+
|
1602 |
+
|
1603 |
+
class NomicBertPreTrainingHeads(nn.Module):
|
1604 |
+
def __init__(self, config):
|
1605 |
+
super().__init__()
|
1606 |
+
self.predictions = NomicBertLMPredictionHead(config)
|
1607 |
+
|
1608 |
+
def forward(self, sequence_output):
|
1609 |
+
prediction_scores = self.predictions(sequence_output)
|
1610 |
+
return prediction_scores
|
1611 |
+
|
1612 |
+
|
1613 |
+
class NomicBertModel(NomicBertPreTrainedModel):
|
1614 |
+
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
1615 |
+
super().__init__(config)
|
1616 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
1617 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
1618 |
+
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
1619 |
+
|
1620 |
+
assert config.activation_function in [
|
1621 |
+
"gelu",
|
1622 |
+
"gelu_new",
|
1623 |
+
"gelu_fast",
|
1624 |
+
"gelu_pytorch_tanh",
|
1625 |
+
"swiglu",
|
1626 |
+
"geglu",
|
1627 |
+
"glu",
|
1628 |
+
]
|
1629 |
+
|
1630 |
+
self.embeddings = NomicBertEmbeddings(config)
|
1631 |
+
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
1632 |
+
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1633 |
+
self.encoder = NomicBertEncoder(config)
|
1634 |
+
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
1635 |
+
|
1636 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1637 |
+
|
1638 |
+
def forward(
|
1639 |
+
self,
|
1640 |
+
input_ids,
|
1641 |
+
attention_mask=None,
|
1642 |
+
position_ids=None,
|
1643 |
+
token_type_ids=None,
|
1644 |
+
return_dict=None,
|
1645 |
+
matryoshka_dim=None,
|
1646 |
+
):
|
1647 |
+
if token_type_ids is None:
|
1648 |
+
token_type_ids = torch.zeros_like(input_ids)
|
1649 |
+
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
1650 |
+
hidden_states = self.emb_ln(hidden_states)
|
1651 |
+
hidden_states = self.emb_drop(hidden_states)
|
1652 |
+
|
1653 |
+
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
1654 |
+
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
1655 |
+
|
1656 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1657 |
+
|
1658 |
+
if matryoshka_dim:
|
1659 |
+
sequence_output = sequence_output[:, :matryoshka_dim]
|
1660 |
+
|
1661 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1662 |
+
last_hidden_state=sequence_output,
|
1663 |
+
pooler_output=pooled_output,
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
|
1667 |
+
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
1668 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1669 |
+
|
1670 |
+
def __init__(self, config: GPT2Config):
|
1671 |
+
super().__init__(config)
|
1672 |
+
|
1673 |
+
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
1674 |
+
self.cls = NomicBertPreTrainingHeads(config)
|
1675 |
+
self.mlm_loss = nn.CrossEntropyLoss()
|
1676 |
+
|
1677 |
+
# Initialize weights and apply final processing
|
1678 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1679 |
+
self.tie_weights()
|
1680 |
+
|
1681 |
+
def tie_weights(self):
|
1682 |
+
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
1683 |
+
|
1684 |
+
def forward(
|
1685 |
+
self,
|
1686 |
+
input_ids,
|
1687 |
+
position_ids=None,
|
1688 |
+
token_type_ids=None,
|
1689 |
+
attention_mask=None,
|
1690 |
+
labels=None,
|
1691 |
+
):
|
1692 |
+
"""
|
1693 |
+
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
1694 |
+
mask).
|
1695 |
+
Outputs:
|
1696 |
+
if `labels` and `next_sentence_label` are not `None`:
|
1697 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1698 |
+
sentence classification loss.
|
1699 |
+
if `labels` or `next_sentence_label` is `None`:
|
1700 |
+
Outputs a tuple comprising
|
1701 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1702 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
1703 |
+
|
1704 |
+
"""
|
1705 |
+
outputs = self.bert(
|
1706 |
+
input_ids,
|
1707 |
+
position_ids=position_ids,
|
1708 |
+
token_type_ids=token_type_ids,
|
1709 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1710 |
+
)
|
1711 |
+
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
1712 |
+
|
1713 |
+
prediction_scores = self.cls(sequence_output)
|
1714 |
+
|
1715 |
+
total_loss = None
|
1716 |
+
if labels is not None:
|
1717 |
+
masked_lm_loss = self.mlm_loss(
|
1718 |
+
rearrange(prediction_scores, "... v -> (...) v"),
|
1719 |
+
rearrange(labels, "... -> (...)"),
|
1720 |
+
)
|
1721 |
+
total_loss = masked_lm_loss.float()
|
1722 |
+
|
1723 |
+
return MaskedLMOutput(
|
1724 |
+
loss=total_loss,
|
1725 |
+
logits=prediction_scores,
|
1726 |
+
hidden_states=outputs.hidden_states,
|
1727 |
+
attentions=None,
|
1728 |
+
)
|
1729 |
+
|
1730 |
+
|
1731 |
+
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
1732 |
+
def __init__(self, config):
|
1733 |
+
super().__init__(config)
|
1734 |
+
self.num_labels = config.num_labels
|
1735 |
+
self.config = config
|
1736 |
+
|
1737 |
+
self.bert = NomicBertModel(config)
|
1738 |
+
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
1739 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1740 |
+
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
1741 |
+
|
1742 |
+
# Initialize weights and apply final processing
|
1743 |
+
self.post_init()
|
1744 |
+
|
1745 |
+
def forward(
|
1746 |
+
self,
|
1747 |
+
input_ids: Optional[torch.Tensor] = None,
|
1748 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1749 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1750 |
+
position_ids: Optional[torch.Tensor] = None,
|
1751 |
+
head_mask: Optional[torch.Tensor] = None,
|
1752 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1753 |
+
labels: Optional[torch.Tensor] = None,
|
1754 |
+
output_attentions: Optional[bool] = None,
|
1755 |
+
output_hidden_states: Optional[bool] = None,
|
1756 |
+
return_dict: Optional[bool] = None,
|
1757 |
+
):
|
1758 |
+
r"""
|
1759 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1760 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1761 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1762 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1763 |
+
"""
|
1764 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1765 |
+
outputs = self.bert(
|
1766 |
+
input_ids,
|
1767 |
+
position_ids=position_ids,
|
1768 |
+
token_type_ids=token_type_ids,
|
1769 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1770 |
+
)
|
1771 |
+
|
1772 |
+
pooled_output = outputs[1]
|
1773 |
+
|
1774 |
+
pooled_output = self.dropout(pooled_output)
|
1775 |
+
logits = self.classifier(pooled_output)
|
1776 |
+
|
1777 |
+
loss = None
|
1778 |
+
if labels is not None:
|
1779 |
+
if self.config.problem_type is None:
|
1780 |
+
if self.num_labels == 1:
|
1781 |
+
self.config.problem_type = "regression"
|
1782 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1783 |
+
self.config.problem_type = "single_label_classification"
|
1784 |
+
else:
|
1785 |
+
self.config.problem_type = "multi_label_classification"
|
1786 |
+
|
1787 |
+
if self.config.problem_type == "regression":
|
1788 |
+
loss_fct = nn.MSELoss()
|
1789 |
+
if self.num_labels == 1:
|
1790 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1791 |
+
else:
|
1792 |
+
loss = loss_fct(logits, labels)
|
1793 |
+
elif self.config.problem_type == "single_label_classification":
|
1794 |
+
loss_fct = nn.CrossEntropyLoss()
|
1795 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1796 |
+
elif self.config.problem_type == "multi_label_classification":
|
1797 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1798 |
+
loss = loss_fct(logits, labels)
|
1799 |
+
if not return_dict:
|
1800 |
+
output = (logits,) + outputs[2:]
|
1801 |
+
return ((loss,) + output) if loss is not None else output
|
1802 |
+
|
1803 |
+
return SequenceClassifierOutput(
|
1804 |
+
loss=loss,
|
1805 |
+
logits=logits,
|
1806 |
+
hidden_states=outputs.hidden_states,
|
1807 |
+
attentions=outputs.attentions,
|
1808 |
+
)
|
1809 |
+
|
1810 |
+
def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
|
1811 |
+
return GPT2Config(
|
1812 |
+
n_embd=vit_config.hidden_size,
|
1813 |
+
n_layer=vit_config.num_hidden_layers,
|
1814 |
+
n_head=vit_config.num_attention_heads,
|
1815 |
+
n_inner=vit_config.intermediate_size,
|
1816 |
+
activation_function=vit_config.hidden_act,
|
1817 |
+
vocab_size=0, # no vocab since using patches
|
1818 |
+
n_positions=0, # No absolute position embedding
|
1819 |
+
resid_pdrop=0.0, # No dropout
|
1820 |
+
embd_pdrop=getattr(vit_config, "dropout", 0.0),
|
1821 |
+
attn_pdrop=vit_config.attention_probs_dropout_prob,
|
1822 |
+
layer_norm_epsilon=vit_config.layer_norm_eps,
|
1823 |
+
initializer_range=vit_config.initializer_range,
|
1824 |
+
bos_token_id=None,
|
1825 |
+
eos_token_id=None,
|
1826 |
+
# These are new arguments not in the original GPT2Config
|
1827 |
+
drop_path_rate=0.0,
|
1828 |
+
# Why is there double layer norm??
|
1829 |
+
prepre_layernom=False,
|
1830 |
+
layer_scale=False,
|
1831 |
+
layer_scale_init=None,
|
1832 |
+
img_size=vit_config.image_size,
|
1833 |
+
patch_size=vit_config.patch_size,
|
1834 |
+
num_channels=vit_config.num_channels,
|
1835 |
+
prenorm=True,
|
1836 |
+
parallel_block=False,
|
1837 |
+
parallel_block_tied_norm=False,
|
1838 |
+
rotary_emb_fraction=0,
|
1839 |
+
tie_word_embeddings=False,
|
1840 |
+
fused_dropout_add_ln=True,
|
1841 |
+
fused_bias_fc=True,
|
1842 |
+
patch_embed_bias=True,
|
1843 |
+
use_flash_attn=True,
|
1844 |
+
qkv_proj_bias=True,
|
1845 |
+
mlp_fc1_bias=getattr(vit_config, "mlp_fc1_bias", True),
|
1846 |
+
mlp_fc2_bias=getattr(vit_config, "mlp_fc2_bias", True),
|
1847 |
+
use_rms_norm=False,
|
1848 |
+
causal=False,
|
1849 |
+
hidden_features_scaling_factor=1.0,
|
1850 |
+
mask_token=False,
|
1851 |
+
learned_pos_embedding=False,
|
1852 |
+
patch_dropout=0,
|
1853 |
+
sinusoidal_pos_embedding=vit_config.model_type == "vit_mae"
|
1854 |
+
)
|
1855 |
+
|
1856 |
+
|
1857 |
+
class NomicAttentionPooling(nn.Module):
|
1858 |
+
def __init__(
|
1859 |
+
self,
|
1860 |
+
config
|
1861 |
+
):
|
1862 |
+
super().__init__()
|
1863 |
+
self.embed_dim = config.n_embd
|
1864 |
+
self.use_flash_attn = config.use_flash_attn
|
1865 |
+
self.fused_bias_fc = config.fused_bias_fc
|
1866 |
+
|
1867 |
+
self.num_heads = config.n_head
|
1868 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
1869 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
1870 |
+
self.head_dim = self.embed_dim // self.num_heads
|
1871 |
+
# we don't really support mqa / gqa for now
|
1872 |
+
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
1873 |
+
|
1874 |
+
self.register_buffer(
|
1875 |
+
"norm_factor",
|
1876 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
1877 |
+
persistent=False,
|
1878 |
+
)
|
1879 |
+
|
1880 |
+
self.Wq = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1881 |
+
self.Wkv = nn.Linear(self.embed_dim, kv_dim, bias=config.qkv_proj_bias)
|
1882 |
+
|
1883 |
+
self.latent = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
1884 |
+
|
1885 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
1886 |
+
self.causal = config.causal
|
1887 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
1888 |
+
|
1889 |
+
def init_weights(self):
|
1890 |
+
trunc_normal_tf_(self.latent, std=self.embed_dim ** -0.5)
|
1891 |
+
|
1892 |
+
def forward(
|
1893 |
+
self,
|
1894 |
+
kv,
|
1895 |
+
attention_mask=None,
|
1896 |
+
cu_seqlens_k=None,
|
1897 |
+
max_seqlen_k=None,
|
1898 |
+
is_padded_inputs: Optional[bool] = True,
|
1899 |
+
output_attentions: bool = False,
|
1900 |
+
):
|
1901 |
+
"""Implements the multihead softmax attention.
|
1902 |
+
Arguments
|
1903 |
+
---------
|
1904 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
1905 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
1906 |
+
causal: if passed, will override self.causal
|
1907 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1908 |
+
of the sequences in the batch, used to index into q.
|
1909 |
+
max_seqlen: int. Maximum sequence length in the batch of q.
|
1910 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1911 |
+
of the sequences in the batch, used to index into kv.
|
1912 |
+
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
1913 |
+
"""
|
1914 |
+
q_latent = self.latent.expand(kv.size(0), -1, -1)
|
1915 |
+
q = self.Wq(q_latent)
|
1916 |
+
bsz, q_len, h_size = q.shape
|
1917 |
+
kv = self.Wkv(kv)
|
1918 |
+
query = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
1919 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
1920 |
+
|
1921 |
+
key, value = kv[:, :, 0], kv[:, :, 1]
|
1922 |
+
|
1923 |
+
query = query.permute(0, 2, 1, 3)
|
1924 |
+
key = key.permute(0, 2, 1, 3)
|
1925 |
+
value = value.permute(0, 2, 1, 3)
|
1926 |
+
|
1927 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
1928 |
+
if attention_mask is not None:
|
1929 |
+
attention_scores = attention_scores + attention_mask
|
1930 |
+
|
1931 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
1932 |
+
attentions_probs = self.drop(attentions_probs)
|
1933 |
+
|
1934 |
+
attn_output = torch.matmul(attentions_probs, value)
|
1935 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
1936 |
+
|
1937 |
+
attn_output = self.out_proj(attn_output)
|
1938 |
+
|
1939 |
+
return attn_output
|
1940 |
+
|
1941 |
+
|
1942 |
+
class NomicMultiHeadAttentionPooling(nn.Module):
|
1943 |
+
def __init__(
|
1944 |
+
self,
|
1945 |
+
config,
|
1946 |
+
):
|
1947 |
+
super().__init__()
|
1948 |
+
self.prenorm = config.prenorm
|
1949 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
1950 |
+
|
1951 |
+
self.attn = NomicAttentionPooling(config)
|
1952 |
+
activation = (
|
1953 |
+
F.sigmoid
|
1954 |
+
if config.activation_function == "glu"
|
1955 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
1956 |
+
)
|
1957 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
1958 |
+
self.mlp = NomciBertGatedMLP(
|
1959 |
+
config.n_embd,
|
1960 |
+
hidden_features=config.n_inner,
|
1961 |
+
bias1=config.mlp_fc1_bias,
|
1962 |
+
bias2=config.mlp_fc2_bias,
|
1963 |
+
activation=activation,
|
1964 |
+
fused_bias_fc=config.fused_bias_fc,
|
1965 |
+
)
|
1966 |
+
else:
|
1967 |
+
self.mlp = NomicBertMLP(
|
1968 |
+
config.n_embd,
|
1969 |
+
hidden_features=config.n_inner,
|
1970 |
+
bias1=config.mlp_fc1_bias,
|
1971 |
+
bias2=config.mlp_fc2_bias,
|
1972 |
+
activation=activation,
|
1973 |
+
fused_bias_fc=config.fused_bias_fc,
|
1974 |
+
)
|
1975 |
+
|
1976 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
1977 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1978 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
1979 |
+
|
1980 |
+
def forward(
|
1981 |
+
self,
|
1982 |
+
hidden_states: torch.Tensor,
|
1983 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1984 |
+
):
|
1985 |
+
r"""Pass the input through the encoder layer.
|
1986 |
+
|
1987 |
+
Args:
|
1988 |
+
hidden_states: the sequence to the encoder layer (required).
|
1989 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
1990 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
1991 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
1992 |
+
about the CLS token in the last layer.
|
1993 |
+
"""
|
1994 |
+
|
1995 |
+
attn_outputs = self.attn(
|
1996 |
+
hidden_states,
|
1997 |
+
attention_mask=attention_mask,
|
1998 |
+
)
|
1999 |
+
|
2000 |
+
normed = self.norm1(attn_outputs)
|
2001 |
+
hidden_states = hidden_states + self.mlp(normed)
|
2002 |
+
|
2003 |
+
return hidden_states
|
2004 |
+
|
2005 |
+
class NomicVisionModel(PreTrainedModel):
|
2006 |
+
def __init__(self, config):
|
2007 |
+
super().__init__(config)
|
2008 |
+
|
2009 |
+
self.embeddings = NomicVisionPatchEmbeddings(config)
|
2010 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
2011 |
+
|
2012 |
+
self.selector = NomicMultiHeadAttentionPooling(config)
|
2013 |
+
|
2014 |
+
self.global_pool = getattr(config, "global_pool", None)
|
2015 |
+
self.num_prefix_tokens = (1 if not getattr(config, "no_cls_token", False) else 0) + getattr(config, "register_tokens", 0)
|
2016 |
+
|
2017 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
2018 |
+
|
2019 |
+
def forward(
|
2020 |
+
self,
|
2021 |
+
pixel_values,
|
2022 |
+
attention_mask=None,
|
2023 |
+
position_ids=None,
|
2024 |
+
token_type_ids=None,
|
2025 |
+
return_dict=None,
|
2026 |
+
matryoshka_dim=None,
|
2027 |
+
):
|
2028 |
+
embeddings, rope = self.embeddings(pixel_values)
|
2029 |
+
|
2030 |
+
original_dtype = embeddings.dtype
|
2031 |
+
|
2032 |
+
hidden_states = embeddings
|
2033 |
+
# unused but easier to pass to gradient checkpointing as words
|
2034 |
+
residual = None
|
2035 |
+
for layer in self.layers:
|
2036 |
+
# need to pass none for backwards compatability
|
2037 |
+
hidden_states, _, residual = layer(hidden_states, None, residual=residual, is_padded_inputs=False, rope=rope)
|
2038 |
+
|
2039 |
+
hidden_states = hidden_states + residual
|
2040 |
+
if self.global_pool == "avg":
|
2041 |
+
hidden_states = hidden_states[:, self.num_prefix_tokens:].mean(dim=1)
|
2042 |
+
|
2043 |
+
pooled_output = self.selector(hidden_states)
|
2044 |
+
|
2045 |
+
return BaseModelOutputWithPast(
|
2046 |
+
last_hidden_state=pooled_output,
|
2047 |
+
hidden_states=hidden_states,
|
2048 |
+
)
|