phoebeklett
commited on
Commit
•
eef0308
1
Parent(s):
debe46b
Update model code
Browse files- configuration.py +260 -178
- modeling.py +1297 -0
configuration.py
CHANGED
@@ -1,45 +1,242 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
#
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def __init__(
|
45 |
self,
|
@@ -47,166 +244,51 @@ class ExtendedMPTConfig(PretrainedConfig):
|
|
47 |
n_heads: int = 32,
|
48 |
n_layers: int = 32,
|
49 |
expansion_ratio: int = 4,
|
50 |
-
|
|
|
51 |
vocab_size: int = 50432,
|
52 |
resid_pdrop: float = 0.0,
|
|
|
53 |
emb_pdrop: float = 0.0,
|
54 |
learned_pos_emb: bool = True,
|
55 |
-
attn_config:
|
56 |
-
init_device: str =
|
57 |
logit_scale: Optional[Union[float, str]] = None,
|
58 |
no_bias: bool = True,
|
59 |
verbose: int = 0,
|
60 |
embedding_fraction: float = 1.0,
|
61 |
-
norm_type: str =
|
62 |
use_cache: bool = False,
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
**kwargs,
|
67 |
):
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
expansion_ratio (int): The ratio of the up/down scale in the MLP.
|
75 |
-
max_seq_len (int): The maximum sequence length of the model.
|
76 |
-
vocab_size (int): The size of the vocabulary.
|
77 |
-
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
78 |
-
emb_pdrop (float): The dropout probability for the embedding layer.
|
79 |
-
learned_pos_emb (bool): Whether to use learned positional embeddings
|
80 |
-
attn_config (Dict): A dictionary used to configure the model's attention module:
|
81 |
-
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
82 |
-
attn_pdrop (float): The dropout probability for the attention layers.
|
83 |
-
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
84 |
-
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
85 |
-
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
86 |
-
this value.
|
87 |
-
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
88 |
-
use the default scale of ``1/sqrt(d_keys)``.
|
89 |
-
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
90 |
-
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
91 |
-
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
92 |
-
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
93 |
-
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
94 |
-
which sub-sequence each token belongs to.
|
95 |
-
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
96 |
-
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
97 |
-
alibi_bias_max (int): The maximum value of the alibi bias.
|
98 |
-
init_device (str): The device to use for parameter initialization.
|
99 |
-
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
100 |
-
no_bias (bool): Whether to use bias in all layers.
|
101 |
-
verbose (int): The verbosity level. 0 is silent.
|
102 |
-
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
103 |
-
norm_type (str): choose type of norm to use
|
104 |
-
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
105 |
-
use_cache (bool): Whether or not the model should return the last key/values attentions
|
106 |
-
init_config (Dict): A dictionary used to configure the model initialization:
|
107 |
-
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
108 |
-
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
109 |
-
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
110 |
-
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
111 |
-
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
112 |
-
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
113 |
-
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
114 |
-
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
115 |
-
if using the baseline_ parameter initialization scheme.
|
116 |
-
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
117 |
-
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
118 |
-
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
119 |
-
---
|
120 |
-
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
121 |
-
"""
|
122 |
self.d_model = d_model
|
123 |
self.n_heads = n_heads
|
124 |
self.n_layers = n_layers
|
125 |
self.expansion_ratio = expansion_ratio
|
126 |
-
self.max_seq_len =
|
|
|
127 |
self.vocab_size = vocab_size
|
128 |
self.resid_pdrop = resid_pdrop
|
129 |
self.emb_pdrop = emb_pdrop
|
130 |
self.learned_pos_emb = learned_pos_emb
|
131 |
-
self.attn_config = attn_config
|
132 |
self.init_device = init_device
|
133 |
self.logit_scale = logit_scale
|
134 |
self.no_bias = no_bias
|
135 |
self.verbose = verbose
|
136 |
self.embedding_fraction = embedding_fraction
|
137 |
self.norm_type = norm_type
|
|
|
138 |
self.use_cache = use_cache
|
139 |
-
self.
|
140 |
-
self.
|
141 |
-
self.
|
142 |
-
if 'name' in kwargs:
|
143 |
-
del kwargs['name']
|
144 |
-
if 'loss_fn' in kwargs:
|
145 |
-
del kwargs['loss_fn']
|
146 |
super().__init__(**kwargs)
|
147 |
-
|
148 |
-
self._validate_config()
|
149 |
-
|
150 |
-
def _set_config_defaults(self, config, config_defaults):
|
151 |
-
# set config defaults
|
152 |
-
for k, v in config_defaults.items():
|
153 |
-
if k not in config:
|
154 |
-
config[k] = v
|
155 |
-
return config
|
156 |
-
|
157 |
-
def _validate_config(self):
|
158 |
-
# set config defaults
|
159 |
-
self.attn_config = self._set_config_defaults(
|
160 |
-
self.attn_config,
|
161 |
-
attn_config_defaults,
|
162 |
-
)
|
163 |
-
self.init_config = self._set_config_defaults(
|
164 |
-
self.init_config,
|
165 |
-
init_config_defaults,
|
166 |
-
)
|
167 |
-
|
168 |
-
if self.attn_config['memory_type']=='faiss' and self.attn_config['mask_by_sim'] is True:
|
169 |
-
raise ValueError(
|
170 |
-
'mask_by_sim is not supported for faiss memory type.'
|
171 |
-
)
|
172 |
-
|
173 |
-
if self.d_model % self.n_heads != 0:
|
174 |
-
raise ValueError('d_model must be divisible by n_heads')
|
175 |
-
if any(
|
176 |
-
prob < 0 or prob > 1 for prob in
|
177 |
-
[self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop]):
|
178 |
-
raise ValueError(
|
179 |
-
"self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1"
|
180 |
-
)
|
181 |
-
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
182 |
-
raise ValueError(
|
183 |
-
f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
184 |
-
if self.attn_config['prefix_lm'] and self.attn_config[
|
185 |
-
'attn_impl'] not in ['torch', 'triton']:
|
186 |
-
raise NotImplementedError(
|
187 |
-
'prefix_lm only implemented with torch and triton attention.')
|
188 |
-
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
|
189 |
-
'torch', 'triton'
|
190 |
-
]:
|
191 |
-
raise NotImplementedError(
|
192 |
-
'alibi only implemented with torch and triton attention.')
|
193 |
-
if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
|
194 |
-
'attn_impl'] not in ['torch', 'triton']:
|
195 |
-
raise NotImplementedError(
|
196 |
-
'attn_uses_sequence_id only implemented with torch and triton attention.'
|
197 |
-
)
|
198 |
-
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
199 |
-
raise ValueError(
|
200 |
-
'model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!'
|
201 |
-
)
|
202 |
-
if isinstance(self.logit_scale,
|
203 |
-
str) and self.logit_scale != 'inv_sqrt_d_model':
|
204 |
-
raise ValueError(
|
205 |
-
f"{self.logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
|
206 |
-
)
|
207 |
-
if self.init_config.get('name', None) is None:
|
208 |
-
raise ValueError(f"{self.init_config=} 'name' needs to be set.")
|
209 |
-
if not self.learned_pos_emb and not self.attn_config['alibi']:
|
210 |
-
raise ValueError(
|
211 |
-
f'Positional information must be provided to the model using either learned_pos_emb or alibi.'
|
212 |
-
)
|
|
|
1 |
+
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
|
16 |
+
# The original code can be found here:
|
17 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mpt/configuration_mpt.py
|
18 |
+
|
19 |
+
"""Extended Mind Mpt configuration"""
|
20 |
+
from typing import Optional, Union
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class ExtendedMptAttentionConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`ExtendedMptAttention`] class. It is used to instantiate
|
31 |
+
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
|
32 |
+
configuration with the defaults will yield a similar configuration to that of the MPT
|
33 |
+
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
|
34 |
+
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
|
41 |
+
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
|
42 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
43 |
+
The dropout probability for the attention layers.
|
44 |
+
attn_impl (`str`, *optional*, defaults to `"torch"`):
|
45 |
+
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
|
46 |
+
clip_qkv (`float`, *optional*):
|
47 |
+
If not `None`, clip the queries, keys, and values in the attention layer to this value.
|
48 |
+
softmax_scale (`float`, *optional*, defaults to `None`):
|
49 |
+
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
|
50 |
+
`1/sqrt(hidden_size)`.
|
51 |
+
prefix_lm (`bool`, *optional*, defaults to `False`)):
|
52 |
+
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
|
53 |
+
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
|
54 |
+
bi-directionally. Tokens outside the prefix use causal attention.
|
55 |
+
qk_ln (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether to apply layer normalization to the queries and keys in the attention layer.
|
57 |
+
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
|
58 |
+
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
|
59 |
+
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
|
60 |
+
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
|
61 |
+
alibi (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether or not to use the alibi bias instead of positional embedding.
|
63 |
+
alibi_bias_max (`int`, *optional*, defaults to 8):
|
64 |
+
The maximum value of the alibi bias.
|
65 |
+
|
66 |
+
#### Memory Configuration ####
|
67 |
+
topk (`int`, *optional*, defaults to `10`):
|
68 |
+
Number of external memories for each query token to retrieve and attend to.
|
69 |
+
memory_type (`string`, *optional*, defaults to `manual`):
|
70 |
+
Whether to store external memories manually or in a vector database.
|
71 |
+
memory_device (`string`, *optional*, defaults to `cpu`):
|
72 |
+
Specify device to store memory.
|
73 |
+
mask_by_sim (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether or not to mask retrieved memories by similarity.
|
75 |
+
sim_threshold (`float`, *optional*, defaults to `0.25`):
|
76 |
+
Threshold for masking retrieved memories.
|
77 |
+
tokenizer_all_special_ids (`list`, *optional*, defaults to `[0, 50278]`):
|
78 |
+
Ids for special tokens to remove from memories.
|
79 |
+
remove_special_tokens (`bool`, *optional*, defaults to `True`):
|
80 |
+
Remove memories that correspond to tokenizer special ids.
|
81 |
+
#### Memory Configuration ####
|
82 |
+
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
attn_type="multihead_attention",
|
88 |
+
attn_pdrop=0,
|
89 |
+
attn_impl="torch",
|
90 |
+
clip_qkv=None,
|
91 |
+
softmax_scale=None,
|
92 |
+
prefix_lm=False,
|
93 |
+
qk_ln=False,
|
94 |
+
attn_uses_sequence_id=False,
|
95 |
+
alibi=True,
|
96 |
+
alibi_bias_max=8,
|
97 |
+
topk=10,
|
98 |
+
memory_type="manual",
|
99 |
+
memory_device="cpu",
|
100 |
+
mask_by_sim=True,
|
101 |
+
sim_threshold=0.25,
|
102 |
+
tokenizer_all_special_ids=[0, 50278],
|
103 |
+
remove_special_ids=False,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(**kwargs)
|
107 |
+
self.attn_type = attn_type
|
108 |
+
self.attn_pdrop = attn_pdrop
|
109 |
+
self.attn_impl = attn_impl
|
110 |
+
self.clip_qkv = clip_qkv
|
111 |
+
self.softmax_scale = softmax_scale
|
112 |
+
self.prefix_lm = prefix_lm
|
113 |
+
self.attn_uses_sequence_id = attn_uses_sequence_id
|
114 |
+
self.alibi = alibi
|
115 |
+
self.qk_ln = qk_ln
|
116 |
+
self.alibi_bias_max = alibi_bias_max
|
117 |
+
self.topk = topk
|
118 |
+
self.memory_type = memory_type
|
119 |
+
self.memory_device = memory_device
|
120 |
+
self.mask_by_sim = mask_by_sim
|
121 |
+
self.sim_threshold = sim_threshold
|
122 |
+
self.tokenizer_all_special_ids = tokenizer_all_special_ids
|
123 |
+
self.remove_special_ids = remove_special_ids
|
124 |
+
|
125 |
+
if attn_type not in ["multihead_attention", "multiquery_attention"]:
|
126 |
+
raise ValueError(
|
127 |
+
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
|
128 |
+
)
|
129 |
+
|
130 |
+
@classmethod
|
131 |
+
def from_pretrained(
|
132 |
+
cls, pretrained_model_name_or_path, **kwargs
|
133 |
+
) -> "PretrainedConfig":
|
134 |
+
cls._set_token_in_kwargs(kwargs)
|
135 |
+
|
136 |
+
config_dict, kwargs = cls.get_config_dict(
|
137 |
+
pretrained_model_name_or_path, **kwargs
|
138 |
+
)
|
139 |
+
|
140 |
+
if config_dict.get("model_type") == "mpt":
|
141 |
+
config_dict = config_dict["attn_config"]
|
142 |
+
|
143 |
+
if (
|
144 |
+
"model_type" in config_dict
|
145 |
+
and hasattr(cls, "model_type")
|
146 |
+
and config_dict["model_type"] != cls.model_type
|
147 |
+
):
|
148 |
+
logger.warning(
|
149 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
150 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
151 |
+
)
|
152 |
+
|
153 |
+
return cls.from_dict(config_dict, **kwargs)
|
154 |
+
|
155 |
+
|
156 |
+
class ExtendedMptConfig(PretrainedConfig):
|
157 |
+
"""
|
158 |
+
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
|
159 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
160 |
+
defaults will yield a similar configuration to the Mpt-7b architecture
|
161 |
+
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
|
162 |
+
|
163 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
164 |
+
documentation from [`PretrainedConfig`] for more information.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
d_model (`int`, *optional*, defaults to 2048):
|
168 |
+
Dimensionality of the embeddings and hidden states.
|
169 |
+
n_heads (`int`, *optional*, defaults to 16):
|
170 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
171 |
+
n_layers (`int`, *optional*, defaults to 24):
|
172 |
+
Number of hidden layers in the Transformer encoder.
|
173 |
+
expansion_ratio (`int`, *optional*, defaults to 4):
|
174 |
+
The ratio of the up/down scale in the MLP.
|
175 |
+
max_seq_len (`int`, *optional*, defaults to 2048):
|
176 |
+
The maximum sequence length of the model.
|
177 |
+
vocab_size (`int`, *optional*, defaults to 50368):
|
178 |
+
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
|
179 |
+
the `inputs_ids` passed when calling [`MptModel`]. Check [this
|
180 |
+
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
|
181 |
+
`vocab_size` has been defined.
|
182 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
183 |
+
The dropout probability applied to the attention output before combining with residual.
|
184 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
185 |
+
The epsilon to use in the layer normalization layers.
|
186 |
+
emb_pdrop (`float`, *optional*, defaults to 0.1):
|
187 |
+
The dropout probability for the embedding layer.
|
188 |
+
learned_pos_emb (`bool`, *optional*, defaults to `False`):
|
189 |
+
Whether to use learned positional embeddings.
|
190 |
+
attn_config (`dict`, *optional*):
|
191 |
+
A dictionary used to configure the model's attention module.
|
192 |
+
init_device (`str`, *optional*):
|
193 |
+
The device to use for parameter initialization. Defined for backward compatibility
|
194 |
+
logit_scale (`float`, *optional*):
|
195 |
+
If not None, scale the logits by this value.
|
196 |
+
no_bias (`bool`, *optional*, defaults to `True`):
|
197 |
+
Whether to use bias in all linear layers.
|
198 |
+
verbose (`int`, *optional*, defaults to 0):
|
199 |
+
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
|
200 |
+
argument is deprecated.
|
201 |
+
embedding_fraction (`float`, *optional*, defaults to 1.0):
|
202 |
+
The fraction to scale the gradients of the embedding layer by.
|
203 |
+
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
|
204 |
+
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
|
205 |
+
compatibility.
|
206 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
207 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
208 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
209 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
210 |
+
|
211 |
+
#### Memory Configuration ####
|
212 |
+
use_external_mind (`bool`, *optional*, defaults to `True`):
|
213 |
+
Whether to attend to external memories.
|
214 |
+
use_external_mind_by_layer (`List[bool]`, *optional*, defaults to List[`True`, ..., `True`]):
|
215 |
+
Whether to attend to external memories, on each decoder layer.
|
216 |
+
#### Memory Configuration ####
|
217 |
+
|
218 |
+
Example:
|
219 |
+
|
220 |
+
```python
|
221 |
+
>>> from transformers import MptConfig, MptModel
|
222 |
+
|
223 |
+
>>> # Initializing a Mpt configuration
|
224 |
+
>>> configuration = MptConfig()
|
225 |
+
|
226 |
+
>>> # Initializing a model (with random weights) from the configuration
|
227 |
+
>>> model = MptModel(configuration)
|
228 |
+
|
229 |
+
>>> # Accessing the model configuration
|
230 |
+
>>> configuration = model.config
|
231 |
+
```
|
232 |
+
"""
|
233 |
+
|
234 |
+
model_type = "extended-mpt"
|
235 |
+
attribute_map = {
|
236 |
+
"num_attention_heads": "n_heads",
|
237 |
+
"hidden_size": "d_model",
|
238 |
+
"num_hidden_layers": "n_layers",
|
239 |
+
}
|
240 |
|
241 |
def __init__(
|
242 |
self,
|
|
|
244 |
n_heads: int = 32,
|
245 |
n_layers: int = 32,
|
246 |
expansion_ratio: int = 4,
|
247 |
+
max_seq_len_inference: int = 2048,
|
248 |
+
max_seq_len_train: int = 2048,
|
249 |
vocab_size: int = 50432,
|
250 |
resid_pdrop: float = 0.0,
|
251 |
+
layer_norm_epsilon: float = 1e-5,
|
252 |
emb_pdrop: float = 0.0,
|
253 |
learned_pos_emb: bool = True,
|
254 |
+
attn_config: ExtendedMptAttentionConfig = None,
|
255 |
+
init_device: str = "cpu",
|
256 |
logit_scale: Optional[Union[float, str]] = None,
|
257 |
no_bias: bool = True,
|
258 |
verbose: int = 0,
|
259 |
embedding_fraction: float = 1.0,
|
260 |
+
norm_type: str = "low_precision_layernorm",
|
261 |
use_cache: bool = False,
|
262 |
+
initializer_range=0.02,
|
263 |
+
use_external_mind: bool = True,
|
264 |
+
use_external_mind_by_layer: list[bool] = [True for _ in range(32)],
|
265 |
**kwargs,
|
266 |
):
|
267 |
+
if attn_config is None:
|
268 |
+
self.attn_config = ExtendedMptAttentionConfig()
|
269 |
+
elif not isinstance(attn_config, ExtendedMptAttentionConfig):
|
270 |
+
self.attn_config = ExtendedMptAttentionConfig(**attn_config)
|
271 |
+
else:
|
272 |
+
self.attn_config = attn_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
self.d_model = d_model
|
274 |
self.n_heads = n_heads
|
275 |
self.n_layers = n_layers
|
276 |
self.expansion_ratio = expansion_ratio
|
277 |
+
self.max_seq_len = max_seq_len_inference
|
278 |
+
self.max_seq_len_train = max_seq_len_train
|
279 |
self.vocab_size = vocab_size
|
280 |
self.resid_pdrop = resid_pdrop
|
281 |
self.emb_pdrop = emb_pdrop
|
282 |
self.learned_pos_emb = learned_pos_emb
|
|
|
283 |
self.init_device = init_device
|
284 |
self.logit_scale = logit_scale
|
285 |
self.no_bias = no_bias
|
286 |
self.verbose = verbose
|
287 |
self.embedding_fraction = embedding_fraction
|
288 |
self.norm_type = norm_type
|
289 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
290 |
self.use_cache = use_cache
|
291 |
+
self.initializer_range = initializer_range
|
292 |
+
self.use_external_mind = use_external_mind
|
293 |
+
self.use_external_mind_by_layer = use_external_mind_by_layer
|
|
|
|
|
|
|
|
|
294 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling.py
ADDED
@@ -0,0 +1,1297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
|
16 |
+
# The original code can be found here:
|
17 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
+
# We annotate the edited code below with 'EM' comments to indicate where we have made changes.
|
19 |
+
"""PyTorch MPT model."""
|
20 |
+
|
21 |
+
import math
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import faiss
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from einops import rearrange
|
29 |
+
from torch import nn
|
30 |
+
from torch.linalg import vector_norm
|
31 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
32 |
+
from torch.nn import functional as F
|
33 |
+
from transformers.file_utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
40 |
+
CausalLMOutputWithCrossAttentions,
|
41 |
+
)
|
42 |
+
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from transformers.utils import logging
|
44 |
+
|
45 |
+
from .configuration import ExtendedMptConfig
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
|
50 |
+
_CONFIG_FOR_DOC = "MptConfig"
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.bloom.modeling_bloom._make_causal_mask
|
54 |
+
def _make_causal_mask(
|
55 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
56 |
+
) -> torch.BoolTensor:
|
57 |
+
"""
|
58 |
+
Make causal mask used for self-attention.
|
59 |
+
"""
|
60 |
+
batch_size, target_length = input_ids_shape
|
61 |
+
mask = torch.empty(
|
62 |
+
(target_length, target_length + past_key_values_length),
|
63 |
+
dtype=torch.bool,
|
64 |
+
device=device,
|
65 |
+
)
|
66 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
67 |
+
seq_ids = torch.arange(target_length, device=device)
|
68 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
69 |
+
|
70 |
+
if past_key_values_length > 0:
|
71 |
+
mask[:, :past_key_values_length] = False
|
72 |
+
|
73 |
+
expanded_mask = mask[None, None, :, :].expand(
|
74 |
+
batch_size, 1, target_length, target_length + past_key_values_length
|
75 |
+
)
|
76 |
+
return expanded_mask
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from transformers.models.bloom.modeling_bloom._expand_mask
|
80 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
81 |
+
"""
|
82 |
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
83 |
+
"""
|
84 |
+
batch_size, src_length = mask.shape
|
85 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
86 |
+
|
87 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
88 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
89 |
+
|
90 |
+
|
91 |
+
def build_mpt_alibi_tensor(
|
92 |
+
num_heads,
|
93 |
+
sequence_length,
|
94 |
+
sequence_length_with_past,
|
95 |
+
alibi_bias_max=8,
|
96 |
+
device=None,
|
97 |
+
for_ae=False,
|
98 |
+
topk=None,
|
99 |
+
):
|
100 |
+
r"""
|
101 |
+
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
102 |
+
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
103 |
+
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
104 |
+
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
105 |
+
"""
|
106 |
+
if not for_ae:
|
107 |
+
alibi = torch.arange(
|
108 |
+
1 - sequence_length, 1, dtype=torch.int32, device=device
|
109 |
+
).view(1, 1, 1, sequence_length)
|
110 |
+
else: # EM: All memory tokens get same bias
|
111 |
+
alibi = (
|
112 |
+
torch.tensor(-sequence_length_with_past, dtype=torch.int32, device=device)
|
113 |
+
.repeat(sequence_length * topk)
|
114 |
+
.view(1, 1, 1, sequence_length * topk)
|
115 |
+
)
|
116 |
+
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
|
117 |
+
|
118 |
+
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.float32, device=device)
|
119 |
+
base = base * (alibi_bias_max / num_heads_power_of_2)
|
120 |
+
|
121 |
+
slopes = 1.0 / torch.pow(2, base)
|
122 |
+
slopes = slopes.view(1, num_heads, 1, 1)
|
123 |
+
|
124 |
+
if num_heads_power_of_2 != num_heads:
|
125 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:num_heads]
|
126 |
+
|
127 |
+
alibi = alibi * slopes
|
128 |
+
return alibi.squeeze(0)
|
129 |
+
|
130 |
+
|
131 |
+
class ExtendedMptAttention(nn.Module):
|
132 |
+
"""Multi-head self attention.
|
133 |
+
Using torch or triton attention implemetation enables user to also use additive bias.
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, config: ExtendedMptConfig):
|
137 |
+
super().__init__()
|
138 |
+
self.hidden_size = config.hidden_size
|
139 |
+
self.n_heads = config.n_heads
|
140 |
+
self.n_layers = config.n_layers
|
141 |
+
self.head_dim = self.hidden_size // self.n_heads
|
142 |
+
self.softmax_scale = config.attn_config.softmax_scale
|
143 |
+
if self.softmax_scale is None:
|
144 |
+
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)
|
145 |
+
|
146 |
+
self.attn_dropout_p = config.attn_config.attn_pdrop
|
147 |
+
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
148 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
hidden_states: torch.Tensor,
|
153 |
+
position_bias: torch.Tensor,
|
154 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
155 |
+
attention_mask: Optional[torch.Tensor] = None,
|
156 |
+
long_range_past_key_value=None,
|
157 |
+
topk=None,
|
158 |
+
faiss_indexes=None,
|
159 |
+
mask_by_sim=None,
|
160 |
+
sim_threshold=None,
|
161 |
+
position_bias_ae=None,
|
162 |
+
current_layer=None,
|
163 |
+
output_retrieved_memory_idx=False,
|
164 |
+
):
|
165 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
166 |
+
|
167 |
+
mixed_qkv = self.Wqkv(hidden_states)
|
168 |
+
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
|
169 |
+
query_states = query_states.reshape(
|
170 |
+
batch_size, seq_length, self.n_heads, self.head_dim
|
171 |
+
).transpose(1, 2)
|
172 |
+
key_states = key_states.reshape(
|
173 |
+
batch_size, seq_length, self.n_heads, self.head_dim
|
174 |
+
).transpose(1, 2)
|
175 |
+
value_states = value_states.reshape(
|
176 |
+
batch_size, seq_length, self.n_heads, self.head_dim
|
177 |
+
).transpose(1, 2)
|
178 |
+
|
179 |
+
if past_key_value is not None:
|
180 |
+
if len(past_key_value) != 0:
|
181 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
182 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
183 |
+
past_key_value = (key_states, value_states)
|
184 |
+
bsz, nh, s_q, d = query_states.shape
|
185 |
+
|
186 |
+
attention_scores = (
|
187 |
+
torch.matmul(query_states, key_states.transpose(-1, -2))
|
188 |
+
* self.softmax_scale
|
189 |
+
)
|
190 |
+
key_length = key_states.shape[-2]
|
191 |
+
query_length = (
|
192 |
+
seq_length
|
193 |
+
if past_key_value is None
|
194 |
+
else seq_length + past_key_value[0].shape[2]
|
195 |
+
)
|
196 |
+
if position_bias is not None:
|
197 |
+
if len(position_bias.shape) != 3:
|
198 |
+
raise ValueError(
|
199 |
+
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}"
|
200 |
+
)
|
201 |
+
|
202 |
+
position_bias_query_index = max(0, position_bias.size(1) - query_length)
|
203 |
+
position_bias_key_index = max(0, position_bias.size(2) - key_length)
|
204 |
+
|
205 |
+
position_bias = position_bias[
|
206 |
+
:, position_bias_query_index:, position_bias_key_index:
|
207 |
+
]
|
208 |
+
|
209 |
+
attention_scores = attention_scores + position_bias
|
210 |
+
|
211 |
+
# EM: Retrieve memories from cache or faiss indexes
|
212 |
+
if long_range_past_key_value is not None or faiss_indexes is not None:
|
213 |
+
if long_range_past_key_value is not None: # Manual store
|
214 |
+
k_cache, v_cache = long_range_past_key_value
|
215 |
+
s_cache = k_cache.size(-2)
|
216 |
+
|
217 |
+
k_cache = k_cache.to(key_states.device)
|
218 |
+
v_cache = v_cache.to(key_states.device)
|
219 |
+
|
220 |
+
# Normalize query and key vectors
|
221 |
+
q_n = query_states / vector_norm(
|
222 |
+
query_states, ord=2, dim=-1, keepdim=True
|
223 |
+
)
|
224 |
+
k_n = k_cache / vector_norm(k_cache, ord=2, dim=-1, keepdim=True)
|
225 |
+
sim = q_n.matmul(k_n.transpose(-1, -2))
|
226 |
+
if s_cache < topk: # number of tokens in cache < topk
|
227 |
+
topk = s_cache
|
228 |
+
val, idx = torch.topk(sim, k=topk, dim=-1) # Retrieve topk memories
|
229 |
+
|
230 |
+
reshaped_idx = idx.reshape(bsz, nh, s_q * topk)
|
231 |
+
selected_k = k_cache.gather(
|
232 |
+
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
|
233 |
+
)
|
234 |
+
selected_v = v_cache.gather(
|
235 |
+
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
|
236 |
+
)
|
237 |
+
|
238 |
+
elif faiss_indexes is not None: # FAISS indexes
|
239 |
+
kn_index, kv_index = faiss_indexes
|
240 |
+
q_n = query_states / vector_norm(
|
241 |
+
query_states, ord=2, dim=-1, keepdim=True
|
242 |
+
)
|
243 |
+
# One-hot encoding for layer, head to only retrieve memories from the same layer, head
|
244 |
+
one_hot_encodings = (
|
245 |
+
F.one_hot(
|
246 |
+
torch.arange(0, nh * self.n_layers, device=query_states.device)
|
247 |
+
)
|
248 |
+
* 10
|
249 |
+
)
|
250 |
+
q_n = torch.concat(
|
251 |
+
[
|
252 |
+
rearrange(q_n, "b h s d -> b (h s) d", h=nh),
|
253 |
+
one_hot_encodings[nh * current_layer : nh * (current_layer + 1)]
|
254 |
+
.unsqueeze(0)
|
255 |
+
.repeat_interleave(repeats=query_states.size(-2), dim=-2),
|
256 |
+
],
|
257 |
+
dim=-1,
|
258 |
+
).squeeze()
|
259 |
+
|
260 |
+
if kn_index.ntotal / (nh * self.n_layers) < topk:
|
261 |
+
topk = int(kn_index.ntotal / (nh * self.n_layers))
|
262 |
+
|
263 |
+
val, idx = kn_index.search(q_n.to("cpu").detach().numpy(), k=topk)
|
264 |
+
val = torch.tensor(val - 100).reshape(bsz, nh, s_q, topk) #Similarity includes scale factor from one-hot encoding
|
265 |
+
reshaped_idx = torch.tensor(
|
266 |
+
idx % (kn_index.ntotal / (nh * self.n_layers))
|
267 |
+
).reshape(bsz, nh, s_q * topk)
|
268 |
+
|
269 |
+
# Retrieve tensors
|
270 |
+
selected_k = rearrange(
|
271 |
+
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, :d],
|
272 |
+
"(h s) d -> 1 h s d",
|
273 |
+
h=nh,
|
274 |
+
).to(query_states.device)
|
275 |
+
selected_v = rearrange(
|
276 |
+
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, d:],
|
277 |
+
"(h s) d -> 1 h s d",
|
278 |
+
h=nh,
|
279 |
+
).to(query_states.device)
|
280 |
+
|
281 |
+
selected_key_length = selected_k.size(-2)
|
282 |
+
key_length += selected_key_length
|
283 |
+
attention_scores_cache = (
|
284 |
+
query_states.matmul(selected_k.transpose(-1, -2)) * self.softmax_scale
|
285 |
+
)
|
286 |
+
# EM: Mask by similarity
|
287 |
+
if mask_by_sim:
|
288 |
+
sim_mask = (
|
289 |
+
rearrange(~(val > sim_threshold).bool(), "b h s i -> b h (s i)")
|
290 |
+
.unsqueeze(-2)
|
291 |
+
.expand(-1, -1, s_q, -1)
|
292 |
+
).to(query_states.device)
|
293 |
+
|
294 |
+
attention_scores_cache = attention_scores_cache.masked_fill(
|
295 |
+
sim_mask, torch.finfo(query_states.dtype).min
|
296 |
+
)
|
297 |
+
|
298 |
+
# EM: Add position bias to cache
|
299 |
+
if position_bias_ae is not None:
|
300 |
+
if len(position_bias_ae.shape) != 3:
|
301 |
+
raise ValueError(
|
302 |
+
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias_ae.shape)}"
|
303 |
+
)
|
304 |
+
|
305 |
+
position_bias_query_index = max(
|
306 |
+
0, position_bias_ae.size(1) - query_length
|
307 |
+
)
|
308 |
+
position_bias_key_index = max(
|
309 |
+
0, position_bias_ae.size(2) - selected_key_length
|
310 |
+
)
|
311 |
+
|
312 |
+
position_bias_ae = position_bias_ae[
|
313 |
+
:, position_bias_query_index:, position_bias_key_index:
|
314 |
+
]
|
315 |
+
|
316 |
+
attention_scores_cache = attention_scores_cache + position_bias_ae
|
317 |
+
|
318 |
+
# EM: Concatenate cache and current attention weights, values
|
319 |
+
attention_scores = torch.cat(
|
320 |
+
[attention_scores_cache, attention_scores], dim=-1
|
321 |
+
) # Concat attention scores, values
|
322 |
+
value_states = torch.cat([selected_v, value_states], dim=-2)
|
323 |
+
|
324 |
+
# EM: Create mask for external memories, queries only attend to their own memories
|
325 |
+
def _create_external_memories_mask(k, s_q, device):
|
326 |
+
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
|
327 |
+
for i in range(s_q):
|
328 |
+
mask[i, i * k : (i + 1) * k] = 1
|
329 |
+
return ~mask
|
330 |
+
|
331 |
+
if attention_mask is not None:
|
332 |
+
# EM: Concatenate attention mask with external memories mask
|
333 |
+
if long_range_past_key_value is not None or faiss_indexes is not None:
|
334 |
+
mask = _create_external_memories_mask(
|
335 |
+
k=topk, s_q=s_q, device=attention_scores.device
|
336 |
+
)
|
337 |
+
attention_mask = attention_mask.squeeze(dim=0).squeeze(dim=0)
|
338 |
+
attention_mask = torch.cat([mask, attention_mask], dim=1)
|
339 |
+
attention_scores = attention_scores.masked_fill(
|
340 |
+
attention_mask, torch.finfo(query_states.dtype).min
|
341 |
+
)
|
342 |
+
|
343 |
+
# (batch_size, n_heads, seq_length, key_length)
|
344 |
+
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(
|
345 |
+
value_states.dtype
|
346 |
+
)
|
347 |
+
attn_weights = nn.functional.dropout(
|
348 |
+
attn_weights, p=self.attn_dropout_p, training=self.training
|
349 |
+
)
|
350 |
+
|
351 |
+
context_states = torch.matmul(attn_weights, value_states)
|
352 |
+
context_states = (
|
353 |
+
context_states.permute(0, 2, 1, 3)
|
354 |
+
.contiguous()
|
355 |
+
.view(batch_size, seq_length, -1)
|
356 |
+
)
|
357 |
+
attn_output = self.out_proj(context_states)
|
358 |
+
|
359 |
+
if not output_retrieved_memory_idx:
|
360 |
+
reshaped_idx = None
|
361 |
+
|
362 |
+
return attn_output, attn_weights, past_key_value, reshaped_idx
|
363 |
+
|
364 |
+
|
365 |
+
class MptMLP(nn.Module):
|
366 |
+
def __init__(self, config: ExtendedMptConfig):
|
367 |
+
super().__init__()
|
368 |
+
hidden_size = config.hidden_size
|
369 |
+
|
370 |
+
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
|
371 |
+
self.act = nn.GELU(approximate="none")
|
372 |
+
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
|
373 |
+
self.hidden_dropout = config.attn_config.attn_pdrop
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self, hidden_states: torch.Tensor, residual: torch.Tensor
|
377 |
+
) -> torch.Tensor:
|
378 |
+
hidden_states = self.act(self.up_proj(hidden_states))
|
379 |
+
|
380 |
+
intermediate_output = self.down_proj(hidden_states)
|
381 |
+
|
382 |
+
output = F.dropout(
|
383 |
+
intermediate_output, p=self.hidden_dropout, training=self.training
|
384 |
+
)
|
385 |
+
output = output + residual
|
386 |
+
|
387 |
+
return output
|
388 |
+
|
389 |
+
|
390 |
+
class MptBlock(nn.Module):
|
391 |
+
"""MPTBlock"""
|
392 |
+
|
393 |
+
def __init__(self, config: ExtendedMptConfig):
|
394 |
+
super().__init__()
|
395 |
+
hidden_size = config.hidden_size
|
396 |
+
|
397 |
+
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
398 |
+
# backward compatibility with weights on the Hub
|
399 |
+
self.norm_1.bias = None
|
400 |
+
|
401 |
+
self.num_heads = config.n_heads
|
402 |
+
self.attn = ExtendedMptAttention(config)
|
403 |
+
|
404 |
+
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
405 |
+
# backward compatibility with weights on the Hub
|
406 |
+
self.norm_2.bias = None
|
407 |
+
|
408 |
+
self.ffn = MptMLP(config)
|
409 |
+
|
410 |
+
self.dropout_rate = config.attn_config.attn_pdrop
|
411 |
+
self.resid_attn_dropout = nn.Dropout(self.dropout_rate)
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
hidden_states: torch.Tensor,
|
416 |
+
position_bias: torch.Tensor,
|
417 |
+
attention_mask: torch.Tensor,
|
418 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
419 |
+
use_cache: bool = False,
|
420 |
+
output_attentions: bool = False,
|
421 |
+
output_retrieved_memory_idx: bool = False,
|
422 |
+
topk: int = None,
|
423 |
+
long_range_past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
424 |
+
faiss_indexes: Tuple = None,
|
425 |
+
position_bias_ae=None,
|
426 |
+
current_layer: int = None,
|
427 |
+
mask_by_sim: bool = False,
|
428 |
+
sim_threshold: float = None,
|
429 |
+
):
|
430 |
+
# hidden_states: [batch_size, seq_length, hidden_size]
|
431 |
+
# Layer norm at the beginning of the transformer layer.
|
432 |
+
layernorm_output = self.norm_1(hidden_states)
|
433 |
+
|
434 |
+
residual = hidden_states
|
435 |
+
|
436 |
+
# Self attention.
|
437 |
+
attn_outputs, attn_weights, past_key_value, reshaped_idx = self.attn(
|
438 |
+
layernorm_output,
|
439 |
+
position_bias=position_bias,
|
440 |
+
attention_mask=attention_mask,
|
441 |
+
past_key_value=layer_past,
|
442 |
+
long_range_past_key_value=long_range_past_key_value,
|
443 |
+
topk=topk,
|
444 |
+
faiss_indexes=faiss_indexes,
|
445 |
+
position_bias_ae=position_bias_ae,
|
446 |
+
current_layer=current_layer,
|
447 |
+
mask_by_sim=mask_by_sim,
|
448 |
+
sim_threshold=sim_threshold,
|
449 |
+
output_retrieved_memory_idx=output_retrieved_memory_idx,
|
450 |
+
)
|
451 |
+
|
452 |
+
hidden_states = self.resid_attn_dropout(attn_outputs) + residual
|
453 |
+
|
454 |
+
layernorm_output = self.norm_2(hidden_states)
|
455 |
+
|
456 |
+
# Get residual
|
457 |
+
residual = hidden_states
|
458 |
+
|
459 |
+
# MLP.
|
460 |
+
output = self.ffn(layernorm_output, residual)
|
461 |
+
outputs = (output,)
|
462 |
+
|
463 |
+
if use_cache:
|
464 |
+
outputs += (past_key_value,)
|
465 |
+
|
466 |
+
if output_attentions:
|
467 |
+
outputs += (attn_weights,)
|
468 |
+
if output_retrieved_memory_idx:
|
469 |
+
outputs += (reshaped_idx,)
|
470 |
+
|
471 |
+
return outputs # hidden_states, present, attentions
|
472 |
+
|
473 |
+
|
474 |
+
class MptPreTrainedModel(PreTrainedModel):
|
475 |
+
"""MPT Pretrained Model"""
|
476 |
+
|
477 |
+
config_class = ExtendedMptConfig
|
478 |
+
base_model_prefix = "transformer"
|
479 |
+
supports_gradient_checkpointing = True
|
480 |
+
_no_split_modules = ["MptBlock"]
|
481 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.*."]
|
482 |
+
|
483 |
+
def __init__(self, *inputs, **kwargs):
|
484 |
+
super().__init__(*inputs, **kwargs)
|
485 |
+
|
486 |
+
def _init_weights(self, module: nn.Module):
|
487 |
+
"""Initialize the weights."""
|
488 |
+
if isinstance(module, nn.Linear):
|
489 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
490 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
491 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
492 |
+
if module.bias is not None:
|
493 |
+
module.bias.data.zero_()
|
494 |
+
elif isinstance(module, nn.Embedding):
|
495 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
496 |
+
if module.padding_idx is not None:
|
497 |
+
module.weight.data[module.padding_idx].zero_()
|
498 |
+
elif isinstance(module, LayerNorm):
|
499 |
+
if module.bias is not None:
|
500 |
+
module.bias.data.zero_()
|
501 |
+
module.weight.data.fill_(1.0)
|
502 |
+
|
503 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
504 |
+
if isinstance(module, ExtendedMptConfig):
|
505 |
+
module.gradient_checkpointing = value
|
506 |
+
|
507 |
+
@staticmethod
|
508 |
+
def _convert_to_mpt_cache(
|
509 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
510 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
511 |
+
"""
|
512 |
+
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
|
513 |
+
"""
|
514 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
515 |
+
batch_size_times_num_heads = batch_size * num_heads
|
516 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
517 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
518 |
+
return tuple(
|
519 |
+
(
|
520 |
+
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
|
521 |
+
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
|
522 |
+
)
|
523 |
+
for layer_past in past_key_value
|
524 |
+
)
|
525 |
+
|
526 |
+
|
527 |
+
MPT_START_DOCSTRING = r"""
|
528 |
+
|
529 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
530 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
531 |
+
|
532 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
533 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
534 |
+
and behavior.
|
535 |
+
|
536 |
+
Parameters:
|
537 |
+
config ([`ExtendedMptConfig`]): Model configuration class with all the parameters of the model.
|
538 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
539 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
540 |
+
"""
|
541 |
+
|
542 |
+
MPT_INPUTS_DOCSTRING = r"""
|
543 |
+
Args:
|
544 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
545 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
546 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
547 |
+
|
548 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
549 |
+
`input_ids`.
|
550 |
+
|
551 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
552 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
553 |
+
|
554 |
+
[What are input IDs?](../glossary#input-ids)
|
555 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
556 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
557 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
558 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
559 |
+
|
560 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
561 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
562 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
563 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
564 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
565 |
+
|
566 |
+
- 1 for tokens that are **not masked**,
|
567 |
+
- 0 for tokens that are **masked**.
|
568 |
+
|
569 |
+
[What are attention masks?](../glossary#attention-mask)
|
570 |
+
|
571 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
572 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
573 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
574 |
+
model's internal embedding lookup matrix.
|
575 |
+
|
576 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
577 |
+
`past_key_values`).
|
578 |
+
use_cache (`bool`, *optional*):
|
579 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
580 |
+
`past_key_values`).
|
581 |
+
output_attentions (`bool`, *optional*):
|
582 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
583 |
+
tensors for more detail.
|
584 |
+
output_hidden_states (`bool`, *optional*):
|
585 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
586 |
+
more detail.
|
587 |
+
return_dict (`bool`, *optional*):
|
588 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
589 |
+
use_external_mind (`bool`, *optional*, defaults to `True`):
|
590 |
+
Whether to attend to external memories.
|
591 |
+
long_range_past_key_values (`List[Tuple[torch.FloatTensor]]`, *optional*, defaults to None):
|
592 |
+
Manual store for memories.
|
593 |
+
faiss_indexes (`Tuple[faiss.swigfaiss_avx2.IndexFlatIP]`, *optional*, defaults to None):
|
594 |
+
Vector store for memories.
|
595 |
+
topk (`int`, *optional*, defaults to `10`):
|
596 |
+
Number of external memories for each query token to retrieve and attend to.
|
597 |
+
"""
|
598 |
+
|
599 |
+
|
600 |
+
@add_start_docstrings(
|
601 |
+
"The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
|
602 |
+
MPT_START_DOCSTRING,
|
603 |
+
)
|
604 |
+
class ExtendedMptModel(MptPreTrainedModel):
|
605 |
+
"""Extended MPT Model"""
|
606 |
+
|
607 |
+
def __init__(self, config: ExtendedMptConfig):
|
608 |
+
super().__init__(config)
|
609 |
+
|
610 |
+
self.hidden_size = config.hidden_size
|
611 |
+
self.num_heads = config.n_heads
|
612 |
+
|
613 |
+
# Embedding + LN Embedding
|
614 |
+
self.wte = nn.Embedding(config.vocab_size, self.hidden_size)
|
615 |
+
|
616 |
+
# Transformer blocks
|
617 |
+
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])
|
618 |
+
|
619 |
+
# Final Layer Norm
|
620 |
+
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
|
621 |
+
# backward compatibility with weights on the Hub
|
622 |
+
self.norm_f.bias = None
|
623 |
+
|
624 |
+
self.gradient_checkpointing = False
|
625 |
+
|
626 |
+
# Initialize weights and apply final processing
|
627 |
+
self.post_init()
|
628 |
+
|
629 |
+
self.mask_by_sim = config.attn_config.mask_by_sim
|
630 |
+
self.sim_threshold = config.attn_config.sim_threshold
|
631 |
+
self.topk = config.attn_config.topk
|
632 |
+
self.use_external_mind = config.use_external_mind
|
633 |
+
self.use_external_mind_by_layer = config.use_external_mind_by_layer
|
634 |
+
|
635 |
+
def get_input_embeddings(self):
|
636 |
+
return self.wte
|
637 |
+
|
638 |
+
def build_mpt_alibi_tensor(
|
639 |
+
self,
|
640 |
+
num_heads,
|
641 |
+
sequence_length,
|
642 |
+
sequence_length_with_past,
|
643 |
+
alibi_bias_max=8,
|
644 |
+
device=None,
|
645 |
+
for_ae=None,
|
646 |
+
topk=None,
|
647 |
+
):
|
648 |
+
return build_mpt_alibi_tensor(
|
649 |
+
num_heads,
|
650 |
+
sequence_length,
|
651 |
+
sequence_length_with_past,
|
652 |
+
alibi_bias_max,
|
653 |
+
device,
|
654 |
+
for_ae=for_ae,
|
655 |
+
topk=topk,
|
656 |
+
)
|
657 |
+
|
658 |
+
def _prepare_attn_mask(
|
659 |
+
self,
|
660 |
+
attention_mask: torch.Tensor,
|
661 |
+
input_shape: Tuple[int, int],
|
662 |
+
past_key_values_length: int,
|
663 |
+
) -> torch.BoolTensor:
|
664 |
+
# create causal mask
|
665 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
666 |
+
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
|
667 |
+
raise ValueError(
|
668 |
+
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
|
669 |
+
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
|
670 |
+
f" {past_key_values_length}."
|
671 |
+
)
|
672 |
+
combined_attention_mask = None
|
673 |
+
device = attention_mask.device
|
674 |
+
_, src_length = input_shape
|
675 |
+
|
676 |
+
if src_length > 1:
|
677 |
+
combined_attention_mask = _make_causal_mask(
|
678 |
+
input_shape,
|
679 |
+
device=device,
|
680 |
+
past_key_values_length=past_key_values_length,
|
681 |
+
)
|
682 |
+
|
683 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
684 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
685 |
+
combined_attention_mask = (
|
686 |
+
expanded_attn_mask
|
687 |
+
if combined_attention_mask is None
|
688 |
+
else expanded_attn_mask | combined_attention_mask
|
689 |
+
)
|
690 |
+
|
691 |
+
return combined_attention_mask
|
692 |
+
|
693 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
694 |
+
self.wte = new_embeddings
|
695 |
+
|
696 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
697 |
+
@add_code_sample_docstrings(
|
698 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
699 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
700 |
+
config_class=_CONFIG_FOR_DOC,
|
701 |
+
)
|
702 |
+
def forward(
|
703 |
+
self,
|
704 |
+
input_ids: Optional[torch.LongTensor] = None,
|
705 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
706 |
+
attention_mask: Optional[torch.Tensor] = None,
|
707 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
708 |
+
use_cache: Optional[bool] = None,
|
709 |
+
output_attentions: Optional[bool] = None,
|
710 |
+
output_hidden_states: Optional[bool] = None,
|
711 |
+
output_retrieved_memory_idx: Optional[bool] = None,
|
712 |
+
return_dict: Optional[bool] = None,
|
713 |
+
use_external_mind: Optional[bool] = None,
|
714 |
+
long_range_past_key_values: Optional[list[Tuple[torch.FloatTensor]]] = None,
|
715 |
+
faiss_indexes: Tuple = None,
|
716 |
+
topk: int = None,
|
717 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
718 |
+
output_attentions = (
|
719 |
+
output_attentions
|
720 |
+
if output_attentions is not None
|
721 |
+
else self.config.output_attentions
|
722 |
+
)
|
723 |
+
output_retrieved_memory_idx = (
|
724 |
+
output_retrieved_memory_idx
|
725 |
+
if output_retrieved_memory_idx is not None
|
726 |
+
else False
|
727 |
+
)
|
728 |
+
output_hidden_states = (
|
729 |
+
output_hidden_states
|
730 |
+
if output_hidden_states is not None
|
731 |
+
else self.config.output_hidden_states
|
732 |
+
)
|
733 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
734 |
+
return_dict = (
|
735 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
736 |
+
)
|
737 |
+
use_external_mind = (
|
738 |
+
use_external_mind
|
739 |
+
if use_external_mind is not None
|
740 |
+
else self.use_external_mind
|
741 |
+
)
|
742 |
+
topk = topk if topk is not None else self.topk
|
743 |
+
|
744 |
+
if input_ids is not None and inputs_embeds is not None:
|
745 |
+
raise ValueError(
|
746 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
747 |
+
)
|
748 |
+
elif input_ids is not None:
|
749 |
+
batch_size, seq_length = input_ids.shape
|
750 |
+
elif inputs_embeds is not None:
|
751 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
752 |
+
else:
|
753 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
754 |
+
|
755 |
+
if past_key_values is None:
|
756 |
+
past_key_values = tuple([None] * len(self.blocks))
|
757 |
+
|
758 |
+
if inputs_embeds is None:
|
759 |
+
inputs_embeds = self.wte(input_ids)
|
760 |
+
|
761 |
+
hidden_states = inputs_embeds
|
762 |
+
|
763 |
+
presents = () if use_cache else None
|
764 |
+
all_self_attentions = () if output_attentions else None
|
765 |
+
all_hidden_states = () if output_hidden_states else None
|
766 |
+
all_idx = () if output_retrieved_memory_idx else None
|
767 |
+
|
768 |
+
if self.gradient_checkpointing and self.training:
|
769 |
+
if use_cache:
|
770 |
+
logger.warning_once(
|
771 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
772 |
+
)
|
773 |
+
use_cache = False
|
774 |
+
|
775 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
776 |
+
seq_length_with_past = seq_length
|
777 |
+
past_key_values_length = 0
|
778 |
+
if past_key_values[0] is not None:
|
779 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
780 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
781 |
+
if attention_mask is None:
|
782 |
+
attention_mask = torch.ones(
|
783 |
+
(batch_size, seq_length_with_past), device=hidden_states.device
|
784 |
+
)
|
785 |
+
else:
|
786 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
787 |
+
|
788 |
+
alibi = self.build_mpt_alibi_tensor(
|
789 |
+
self.num_heads,
|
790 |
+
self.config.max_seq_len,
|
791 |
+
seq_length_with_past,
|
792 |
+
device=hidden_states.device,
|
793 |
+
)
|
794 |
+
# EM: Alibi tensor for retrieved kvs
|
795 |
+
alibi_ae = self.build_mpt_alibi_tensor(
|
796 |
+
self.num_heads,
|
797 |
+
seq_length,
|
798 |
+
seq_length_with_past,
|
799 |
+
device=hidden_states.device,
|
800 |
+
for_ae=True,
|
801 |
+
topk=topk,
|
802 |
+
)
|
803 |
+
|
804 |
+
causal_mask = self._prepare_attn_mask(
|
805 |
+
attention_mask,
|
806 |
+
input_shape=(batch_size, seq_length),
|
807 |
+
past_key_values_length=past_key_values_length,
|
808 |
+
)
|
809 |
+
|
810 |
+
for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
|
811 |
+
if output_hidden_states:
|
812 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
813 |
+
|
814 |
+
long_range_past_key_value = (
|
815 |
+
long_range_past_key_values[i]
|
816 |
+
if (
|
817 |
+
long_range_past_key_values is not None
|
818 |
+
and self.use_external_mind_by_layer[i]
|
819 |
+
and use_external_mind is True
|
820 |
+
)
|
821 |
+
else None
|
822 |
+
)
|
823 |
+
if long_range_past_key_value is not None and faiss_indexes is not None:
|
824 |
+
raise NotImplementedError(
|
825 |
+
"""Using faiss and passing key value pairs
|
826 |
+
manually are mutually exclusive right now."""
|
827 |
+
)
|
828 |
+
if self.gradient_checkpointing and self.training:
|
829 |
+
|
830 |
+
def create_custom_forward(module):
|
831 |
+
def custom_forward(*inputs):
|
832 |
+
# None for past_key_value
|
833 |
+
return module(
|
834 |
+
*inputs,
|
835 |
+
use_cache=use_cache,
|
836 |
+
output_attentions=output_attentions,
|
837 |
+
)
|
838 |
+
|
839 |
+
return custom_forward
|
840 |
+
|
841 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
842 |
+
create_custom_forward(block),
|
843 |
+
hidden_states,
|
844 |
+
alibi,
|
845 |
+
causal_mask,
|
846 |
+
layer_past,
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
outputs = block(
|
850 |
+
hidden_states,
|
851 |
+
layer_past=layer_past,
|
852 |
+
attention_mask=causal_mask,
|
853 |
+
use_cache=use_cache,
|
854 |
+
output_attentions=output_attentions,
|
855 |
+
output_retrieved_memory_idx=output_retrieved_memory_idx,
|
856 |
+
position_bias=alibi,
|
857 |
+
position_bias_ae=alibi_ae,
|
858 |
+
topk=topk,
|
859 |
+
long_range_past_key_value=long_range_past_key_value,
|
860 |
+
faiss_indexes=faiss_indexes,
|
861 |
+
mask_by_sim=self.mask_by_sim,
|
862 |
+
sim_threshold=self.sim_threshold,
|
863 |
+
current_layer=i,
|
864 |
+
)
|
865 |
+
|
866 |
+
hidden_states = outputs[0]
|
867 |
+
if use_cache is True:
|
868 |
+
presents = presents + (outputs[1],)
|
869 |
+
|
870 |
+
if output_attentions:
|
871 |
+
all_self_attentions = all_self_attentions + (
|
872 |
+
outputs[2 if use_cache else 1],
|
873 |
+
)
|
874 |
+
if output_retrieved_memory_idx:
|
875 |
+
idx = (
|
876 |
+
3
|
877 |
+
if (use_cache & output_attentions)
|
878 |
+
else 2
|
879 |
+
if (use_cache or output_attentions)
|
880 |
+
else 1
|
881 |
+
)
|
882 |
+
all_idx = all_idx + (outputs[idx],)
|
883 |
+
|
884 |
+
# Add last hidden state
|
885 |
+
hidden_states = self.norm_f(hidden_states)
|
886 |
+
|
887 |
+
if output_hidden_states:
|
888 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
889 |
+
|
890 |
+
if not return_dict:
|
891 |
+
return tuple(
|
892 |
+
v
|
893 |
+
for v in [
|
894 |
+
hidden_states,
|
895 |
+
presents,
|
896 |
+
all_hidden_states,
|
897 |
+
all_self_attentions,
|
898 |
+
all_idx,
|
899 |
+
]
|
900 |
+
if v is not None
|
901 |
+
)
|
902 |
+
|
903 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
904 |
+
last_hidden_state=hidden_states,
|
905 |
+
past_key_values=presents,
|
906 |
+
hidden_states=all_hidden_states,
|
907 |
+
attentions=(all_self_attentions, all_idx), # EM: Return idx of retrieved memories
|
908 |
+
)
|
909 |
+
|
910 |
+
|
911 |
+
@add_start_docstrings(
|
912 |
+
"""
|
913 |
+
The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
914 |
+
embeddings).
|
915 |
+
""",
|
916 |
+
MPT_START_DOCSTRING,
|
917 |
+
)
|
918 |
+
class ExtendedMptForCausalLM(MptPreTrainedModel):
|
919 |
+
"""Extended MPT for Causal LM."""
|
920 |
+
|
921 |
+
_tied_weights_keys = ["lm_head.weight"]
|
922 |
+
|
923 |
+
def __init__(self, config: ExtendedMptConfig, external_memories=None):
|
924 |
+
super().__init__(config)
|
925 |
+
self.transformer: ExtendedMptModel = ExtendedMptModel(config)
|
926 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
927 |
+
|
928 |
+
self.use_external_mind = config.use_external_mind
|
929 |
+
self.memory_type = config.attn_config.memory_type
|
930 |
+
self.memory_ids = None
|
931 |
+
self.memories = None
|
932 |
+
self.memory_device = config.attn_config.memory_device
|
933 |
+
self.remove_special_ids = config.attn_config.remove_special_ids
|
934 |
+
self.tokenizer_all_special_ids = config.attn_config.tokenizer_all_special_ids
|
935 |
+
|
936 |
+
# EM: Memory token ids
|
937 |
+
if external_memories is not None:
|
938 |
+
self.memory_ids = external_memories
|
939 |
+
# Initialize weights and apply final processing
|
940 |
+
self.post_init()
|
941 |
+
|
942 |
+
def get_output_embeddings(self):
|
943 |
+
return self.lm_head
|
944 |
+
|
945 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
946 |
+
self.lm_head = new_embeddings
|
947 |
+
|
948 |
+
# EM: Clear memory cache
|
949 |
+
def clear_memory(self):
|
950 |
+
"""Clear memory cache."""
|
951 |
+
self.memory_ids = None
|
952 |
+
self.memories = None
|
953 |
+
|
954 |
+
def prepare_inputs_for_generation(
|
955 |
+
self,
|
956 |
+
input_ids: torch.LongTensor,
|
957 |
+
past_key_values: Optional[torch.Tensor] = None,
|
958 |
+
attention_mask: Optional[torch.Tensor] = None,
|
959 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
960 |
+
use_cache: Optional[bool] = None,
|
961 |
+
**kwargs,
|
962 |
+
) -> dict:
|
963 |
+
# only last token for input_ids if past is not None
|
964 |
+
if past_key_values:
|
965 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
966 |
+
|
967 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
968 |
+
if inputs_embeds is not None and past_key_values is None:
|
969 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
970 |
+
else:
|
971 |
+
model_inputs = {"input_ids": input_ids}
|
972 |
+
|
973 |
+
model_inputs.update(
|
974 |
+
{
|
975 |
+
"past_key_values": past_key_values, # NITS should it be layer_past?
|
976 |
+
"use_cache": use_cache,
|
977 |
+
"attention_mask": attention_mask,
|
978 |
+
"use_external_mind": kwargs.get("use_external_mind"), # EM: Add config here
|
979 |
+
"topk": kwargs.get("topk"),
|
980 |
+
}
|
981 |
+
)
|
982 |
+
return model_inputs
|
983 |
+
|
984 |
+
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
|
985 |
+
@add_code_sample_docstrings(
|
986 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
987 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
988 |
+
config_class=_CONFIG_FOR_DOC,
|
989 |
+
)
|
990 |
+
def forward(
|
991 |
+
self,
|
992 |
+
input_ids: Optional[torch.LongTensor] = None,
|
993 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
994 |
+
attention_mask: Optional[torch.Tensor] = None,
|
995 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
996 |
+
labels: Optional[torch.Tensor] = None,
|
997 |
+
use_cache: Optional[bool] = None,
|
998 |
+
output_attentions: Optional[bool] = None,
|
999 |
+
output_retrieved_memory_idx: Optional[bool] = None,
|
1000 |
+
output_hidden_states: Optional[bool] = None,
|
1001 |
+
return_dict: Optional[bool] = None,
|
1002 |
+
use_external_mind: Optional[bool] = None,
|
1003 |
+
topk: int = None,
|
1004 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
1005 |
+
r"""
|
1006 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1007 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1008 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1009 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1010 |
+
"""
|
1011 |
+
return_dict = (
|
1012 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
# EM: Generate key value cache once on first call
|
1016 |
+
if (
|
1017 |
+
self.memory_ids is not None and self.memories is None
|
1018 |
+
):
|
1019 |
+
self.memories = self.generate_cache(
|
1020 |
+
self.memory_ids, cache_type=self.memory_type
|
1021 |
+
)
|
1022 |
+
# EM: Remove special tokens from memory cache
|
1023 |
+
if self.remove_special_ids:
|
1024 |
+
idx_to_remove = [
|
1025 |
+
token_idx
|
1026 |
+
for token_idx, token in enumerate(self.memory_ids[0])
|
1027 |
+
if token in self.tokenizer_all_special_ids
|
1028 |
+
]
|
1029 |
+
if self.memory_type == "manual":
|
1030 |
+
mask = torch.ones(self.memories[0][0].size(), dtype=torch.bool)
|
1031 |
+
mask[:, :, idx_to_remove, :] = False
|
1032 |
+
|
1033 |
+
new_size = (
|
1034 |
+
self.memories[0][0].size(0),
|
1035 |
+
self.memories[0][0].size(1),
|
1036 |
+
-1,
|
1037 |
+
self.memories[0][0].size(3),
|
1038 |
+
)
|
1039 |
+
self.memories = [
|
1040 |
+
(ks[mask].view(new_size), vs[mask].view(new_size))
|
1041 |
+
for ks, vs in self.memories
|
1042 |
+
]
|
1043 |
+
else:
|
1044 |
+
kn_index, kv_index = self.memories
|
1045 |
+
all_idx_to_remove = [
|
1046 |
+
[
|
1047 |
+
i
|
1048 |
+
for i in range(0, kn_index.ntotal)
|
1049 |
+
if (
|
1050 |
+
i
|
1051 |
+
% (
|
1052 |
+
kn_index.ntotal
|
1053 |
+
/ (
|
1054 |
+
self.config.num_attention_heads
|
1055 |
+
* self.config.num_hidden_layers
|
1056 |
+
)
|
1057 |
+
)
|
1058 |
+
)
|
1059 |
+
== j
|
1060 |
+
]
|
1061 |
+
for j in idx_to_remove
|
1062 |
+
]
|
1063 |
+
kn_index.remove_ids(
|
1064 |
+
np.array(all_idx_to_remove).flatten().astype("int64")
|
1065 |
+
)
|
1066 |
+
kv_index.remove_ids(
|
1067 |
+
np.array(all_idx_to_remove).flatten().astype("int64")
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
use_external_mind = (
|
1071 |
+
use_external_mind
|
1072 |
+
if use_external_mind is not None
|
1073 |
+
else self.use_external_mind
|
1074 |
+
)
|
1075 |
+
topk = topk if topk is not None else None
|
1076 |
+
|
1077 |
+
long_range_past_key_values = None
|
1078 |
+
faiss_indexes = None
|
1079 |
+
if hasattr(self, "memories") and isinstance(self.memories, list):
|
1080 |
+
long_range_past_key_values = self.memories
|
1081 |
+
elif hasattr(self, "memories"):
|
1082 |
+
faiss_indexes = self.memories
|
1083 |
+
|
1084 |
+
transformer_outputs = self.transformer(
|
1085 |
+
input_ids,
|
1086 |
+
past_key_values=past_key_values,
|
1087 |
+
attention_mask=attention_mask,
|
1088 |
+
inputs_embeds=inputs_embeds,
|
1089 |
+
use_cache=use_cache,
|
1090 |
+
output_attentions=output_attentions,
|
1091 |
+
output_retrieved_memory_idx=output_retrieved_memory_idx,
|
1092 |
+
output_hidden_states=output_hidden_states,
|
1093 |
+
return_dict=return_dict,
|
1094 |
+
long_range_past_key_values=long_range_past_key_values,
|
1095 |
+
faiss_indexes=faiss_indexes,
|
1096 |
+
use_external_mind=use_external_mind,
|
1097 |
+
topk=topk,
|
1098 |
+
)
|
1099 |
+
hidden_states = transformer_outputs[0]
|
1100 |
+
|
1101 |
+
lm_logits = self.lm_head(hidden_states)
|
1102 |
+
|
1103 |
+
loss = None
|
1104 |
+
if labels is not None:
|
1105 |
+
# move labels to correct device to enable model parallelism
|
1106 |
+
labels = labels.to(lm_logits.device)
|
1107 |
+
# Shift so that tokens < n predict n
|
1108 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1109 |
+
shift_labels = labels[..., 1:].contiguous()
|
1110 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
1111 |
+
# Flatten the tokens
|
1112 |
+
loss_fct = CrossEntropyLoss()
|
1113 |
+
loss = loss_fct(
|
1114 |
+
shift_logits.view(batch_size * seq_length, vocab_size),
|
1115 |
+
shift_labels.view(batch_size * seq_length),
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
if not return_dict:
|
1119 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1120 |
+
return ((loss,) + output) if loss is not None else output
|
1121 |
+
|
1122 |
+
return CausalLMOutputWithCrossAttentions(
|
1123 |
+
loss=loss,
|
1124 |
+
logits=lm_logits,
|
1125 |
+
past_key_values=transformer_outputs.past_key_values,
|
1126 |
+
hidden_states=transformer_outputs.hidden_states,
|
1127 |
+
attentions=transformer_outputs.attentions,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
def _reorder_cache(
|
1131 |
+
self,
|
1132 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...],
|
1133 |
+
beam_idx: torch.LongTensor,
|
1134 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1135 |
+
"""
|
1136 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1137 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1138 |
+
beam_idx at every generation step.
|
1139 |
+
|
1140 |
+
Output shares the same memory storage as `past`.
|
1141 |
+
"""
|
1142 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
1143 |
+
device_to_beam_idx = {
|
1144 |
+
past_state.device: beam_idx.to(past_state.device)
|
1145 |
+
for layer_past in past
|
1146 |
+
for past_state in layer_past
|
1147 |
+
}
|
1148 |
+
reordered_past = tuple(
|
1149 |
+
(
|
1150 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1151 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
1152 |
+
)
|
1153 |
+
for layer_past in past
|
1154 |
+
)
|
1155 |
+
return reordered_past
|
1156 |
+
|
1157 |
+
# EM: Add method to generate key-value cache
|
1158 |
+
def generate_cache(
|
1159 |
+
self,
|
1160 |
+
input_ids: torch.LongTensor,
|
1161 |
+
stride: int = 512,
|
1162 |
+
max_len: int = 3072,
|
1163 |
+
cache_type: str = "manual",
|
1164 |
+
):
|
1165 |
+
"""Generate cache for long range attention."""
|
1166 |
+
if cache_type not in ["manual", "faiss"]:
|
1167 |
+
raise NotImplementedError(f"Cache type {cache_type} not implemented.")
|
1168 |
+
|
1169 |
+
prev_end_loc = 0
|
1170 |
+
long_range_past_key_values = None
|
1171 |
+
faiss_indexes = None
|
1172 |
+
for b_idx in range(
|
1173 |
+
0, input_ids.size(-1), stride
|
1174 |
+
): # generate kv-pairs using stride
|
1175 |
+
end_loc = min(b_idx + max_len, input_ids.size(-1))
|
1176 |
+
trg_len = end_loc - prev_end_loc
|
1177 |
+
subseq = input_ids[:, b_idx:end_loc].to(self.device)
|
1178 |
+
with torch.no_grad():
|
1179 |
+
outputs = self.transformer(
|
1180 |
+
subseq, use_cache=True, use_external_mind=False
|
1181 |
+
)
|
1182 |
+
to_cache = [
|
1183 |
+
(kv[0][:, :, -trg_len:], kv[1][:, :, -trg_len:])
|
1184 |
+
for kv in outputs.past_key_values
|
1185 |
+
]
|
1186 |
+
long_range_past_key_values, faiss_indexes = self.cache(
|
1187 |
+
to_cache,
|
1188 |
+
cache_type,
|
1189 |
+
long_range_past_key_values=long_range_past_key_values,
|
1190 |
+
faiss_indexes=faiss_indexes,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
prev_end_loc = end_loc
|
1194 |
+
if end_loc == input_ids.size(-1):
|
1195 |
+
break
|
1196 |
+
if long_range_past_key_values is not None:
|
1197 |
+
return long_range_past_key_values
|
1198 |
+
else:
|
1199 |
+
return faiss_indexes
|
1200 |
+
|
1201 |
+
# EM: Add method to cache key value pairs
|
1202 |
+
def cache(
|
1203 |
+
self,
|
1204 |
+
to_cache: list,
|
1205 |
+
cache_type: str = "manual",
|
1206 |
+
long_range_past_key_values: list = None,
|
1207 |
+
faiss_indexes: faiss.IndexFlatIP = None,
|
1208 |
+
max_length_cache=100000,
|
1209 |
+
verbose=False,
|
1210 |
+
):
|
1211 |
+
"""Cache long range attention."""
|
1212 |
+
if (long_range_past_key_values is not None) & (faiss_indexes is not None):
|
1213 |
+
raise NotImplementedError(
|
1214 |
+
"Using faiss and passing key value pairs manually are mutually exclusive right now."
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
# To avoid spinning up a new index for each layer, we add one-hot encodings to the keys so that queries match with the appropriate layer, head
|
1218 |
+
if cache_type == "faiss": # add one-hot encoding to match layer, head indices
|
1219 |
+
one_hot_encodings = (
|
1220 |
+
F.one_hot(torch.arange(0, self.config.n_heads * self.config.n_layers))
|
1221 |
+
* 10
|
1222 |
+
)
|
1223 |
+
# New indices, one to store normalized keys with one-hot encodings, another to retrieve kv pairs without normalization
|
1224 |
+
if faiss_indexes is None:
|
1225 |
+
faiss_indexes = (
|
1226 |
+
faiss.IndexFlatIP(
|
1227 |
+
to_cache[0][0].size(-1) + one_hot_encodings.size(-1)
|
1228 |
+
),
|
1229 |
+
faiss.IndexFlatIP(to_cache[0][0].size(-1) * 2),
|
1230 |
+
)
|
1231 |
+
kn_index, kv_index = faiss_indexes
|
1232 |
+
for l_idx, (k, v) in enumerate(to_cache):
|
1233 |
+
k_n = (k / vector_norm(k, ord=2, dim=-1, keepdim=True)).to("cpu") #Normalize keys for cosine sim
|
1234 |
+
|
1235 |
+
# Indices are 2 dimensional, so flatten
|
1236 |
+
# Add normalized keys with one-hot encodings
|
1237 |
+
k_n = torch.concat(
|
1238 |
+
[
|
1239 |
+
rearrange(k_n, "b h s d -> b (h s) d", h=self.config.n_heads),
|
1240 |
+
one_hot_encodings[
|
1241 |
+
self.config.n_heads
|
1242 |
+
* l_idx : self.config.n_heads
|
1243 |
+
* (l_idx + 1)
|
1244 |
+
]
|
1245 |
+
.unsqueeze(0)
|
1246 |
+
.repeat_interleave(repeats=k.size(-2), dim=-2),
|
1247 |
+
],
|
1248 |
+
dim=-1,
|
1249 |
+
)
|
1250 |
+
kn_index.add(k_n.squeeze().numpy())
|
1251 |
+
|
1252 |
+
# Add unnormalized keys and values
|
1253 |
+
k = rearrange(k, "b h s d -> b (h s) d", h=self.config.n_heads)
|
1254 |
+
v = rearrange(v, "b h s d -> b (h s) d", h=self.config.n_heads)
|
1255 |
+
kv_index.add(
|
1256 |
+
torch.concat([k.squeeze(), v.squeeze()], dim=1).to("cpu").numpy()
|
1257 |
+
)
|
1258 |
+
else:
|
1259 |
+
# Simply use list to store key value pairs
|
1260 |
+
if long_range_past_key_values is None:
|
1261 |
+
long_range_past_key_values = [
|
1262 |
+
(k.to(self.memory_device), v.to(self.memory_device))
|
1263 |
+
for k, v in to_cache
|
1264 |
+
]
|
1265 |
+
else:
|
1266 |
+
long_range_past_key_values = [
|
1267 |
+
(
|
1268 |
+
torch.concat(
|
1269 |
+
[kv[0], to_cache[ind][0].to(self.memory_device)], dim=2
|
1270 |
+
),
|
1271 |
+
torch.concat(
|
1272 |
+
[kv[1], to_cache[ind][1].to(self.memory_device)], dim=2
|
1273 |
+
),
|
1274 |
+
)
|
1275 |
+
for ind, kv in enumerate(long_range_past_key_values)
|
1276 |
+
]
|
1277 |
+
if (
|
1278 |
+
long_range_past_key_values is not None
|
1279 |
+
): # set a limit on manual memory length
|
1280 |
+
if long_range_past_key_values[0][0].size(-2) > max_length_cache:
|
1281 |
+
long_range_past_key_values = [
|
1282 |
+
(
|
1283 |
+
kv[0][:, :, -max_length_cache:],
|
1284 |
+
kv[1][:, :, -max_length_cache:],
|
1285 |
+
)
|
1286 |
+
for kv in long_range_past_key_values
|
1287 |
+
]
|
1288 |
+
if verbose:
|
1289 |
+
if cache_type == "faiss":
|
1290 |
+
print(f"{kn_index.ntotal} keys in faiss index")
|
1291 |
+
else:
|
1292 |
+
print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs")
|
1293 |
+
|
1294 |
+
return (
|
1295 |
+
long_range_past_key_values,
|
1296 |
+
(kn_index, kv_index) if cache_type == "faiss" else None,
|
1297 |
+
)
|