File size: 2,591 Bytes
10f577d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: train
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9330666661262512
    - name: Precision
      type: precision
      value: 0.9330666661262512
    - name: Recall
      type: recall
      value: 0.9330666661262512
    - name: F1
      type: f1
      value: 0.9330666661262512
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2797
- Accuracy: 0.9331
- Precision: 0.9331
- Recall: 0.9331
- F1: 0.9331
- Auroc: 0.9810

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Accuracy | Auroc  | F1     | Validation Loss | Precision | Recall |
|:-------------:|:-----:|:----:|:--------:|:------:|:------:|:---------------:|:---------:|:------:|
| 0.1436        | 0.46  | 500  | 0.8935   | 0.9751 | 0.8935 | 0.2923          | 0.8935    | 0.8935 |
| 0.1621        | 0.91  | 1000 | 0.9261   | 0.9789 | 0.9261 | 0.1984          | 0.9261    | 0.9261 |
| 0.2196        | 1.37  | 1500 | 0.9289   | 0.9810 | 0.9289 | 0.2082          | 0.9289    | 0.9289 |
| 0.1457        | 1.83  | 2000 | 0.9325   | 0.9816 | 0.9325 | 0.2282          | 0.9325    | 0.9325 |
| 0.1103        | 2.29  | 2500 | 0.9305   | 0.9806 | 0.9305 | 0.3201          | 0.9305    | 0.9305 |
| 0.0679        | 2.74  | 3000 | 0.2797   | 0.9331 | 0.9331 | 0.9331          | 0.9331    | 0.9810 |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1