File size: 1,933 Bytes
77a5d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: SummarEaseV1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SummarEaseV1

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4382
- Rouge1: 0.2458
- Rouge2: 0.1168
- Rougel: 0.2008
- Rougelsum: 0.2001
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 0.7619 | 3    | 2.5665          | 0.2388 | 0.1118 | 0.1962 | 0.1959    | 19.0    |
| No log        | 1.7778 | 7    | 2.4863          | 0.2439 | 0.1153 | 0.2005 | 0.1996    | 19.0    |
| No log        | 2.7937 | 11   | 2.4462          | 0.2461 | 0.1169 | 0.2009 | 0.2003    | 19.0    |
| No log        | 3.0476 | 12   | 2.4382          | 0.2458 | 0.1168 | 0.2008 | 0.2001    | 19.0    |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1