--- base_model: - mistralai/Ministral-8B-Instruct-2410 --- This model the 3-bit quantized version of the [ministral-8B](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) by Mistral-AI.Please follow the following instruction to run the model on your device: There are multiple ways to infer the model. Firstly, let's install `llama.cpp` and use it for the inference 1. Install ``` git clone https://github.com/ggerganov/llama.cpp !mkdir llama.cpp/build && cd llama.cpp/build && cmake .. && cmake --build . --config Release ``` 2. Inference ``` ./llama.cpp/build/bin/llama-cli -m ./ministral-8b_Q3_K_M.gguf -cnv -p "You are a helpful assistant" ``` Here, you can interact with model from your terminal. **Alternatively**, we can use python binding of the `llama.cpp` to run the model on both CPU and GPU. 1. Install ``` pip install --no-cache-dir llama-cpp-python==0.2.85 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu122 ``` 2. Inference on CPU ``` from llama_cpp import Llama model_path = "./ministral-8b_Q3_K_M.gguf" llm = Llama(model_path=model_path, n_threads=8, verbose=False) prompt = "What should I do when my eyes are dry?" output = llm( prompt=f"<|user|>\n{prompt}<|end|>\n<|assistant|>", max_tokens=4096, stop=["<|end|>"], echo=False, # Whether to echo the prompt ) print(output) ``` 3. Inference on GPU ``` from llama_cpp import Llama model_path = "./ministral-8b_Q3_K_M.gguf" llm = Llama(model_path=model_path, n_threads=8, n_gpu_layers=-1, verbose=False) prompt = "What should I do when my eyes are dry?" output = llm( prompt=f"<|user|>\n{prompt}<|end|>\n<|assistant|>", max_tokens=4096, stop=["<|end|>"], echo=False, # Whether to echo the prompt ) print(output) ```