|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Falcon configuration"""
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
|
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
|
}
|
|
|
|
|
|
class FalconConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the
|
|
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 65024):
|
|
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`FalconModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4544):
|
|
Dimension of the hidden representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 71):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
|
`config.is_decoder=True`.
|
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
|
The epsilon used by the layer normalization layers.
|
|
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for MLP layers.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for attention layers.
|
|
num_kv_heads (`int`, *optional*):
|
|
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
|
`num_attention_heads`.
|
|
alibi (`bool`, *optional*, defaults to `False`):
|
|
Whether to use ALiBi positional biases during self-attention.
|
|
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
|
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
|
arguments are ignored, as the new decoder always uses parallel attention.
|
|
multi_query (`bool`, *optional*, defaults to `True`):
|
|
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
|
parallel_attn (`bool`, *optional*, defaults to `True`):
|
|
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
|
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
|
bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use bias on Linear layers.
|
|
bos_token_id (`int`, *optional*, defaults to 11):
|
|
The id of the "beginning-of-sequence" token.
|
|
eos_token_id (`int`, *optional*, defaults to 11):
|
|
The id of the "end-of-sequence" token.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import FalconModel, FalconConfig
|
|
|
|
>>> # Initializing a small (2-layer) Falcon configuration
|
|
>>> configuration = FalconConfig(num_hidden_layers=2)
|
|
|
|
>>> # Initializing a model from the small configuration
|
|
>>> model = FalconModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
model_type = "falcon"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=65024,
|
|
hidden_size=4544,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=71,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
use_cache=True,
|
|
hidden_dropout=0.0,
|
|
attention_dropout=0.0,
|
|
num_kv_heads=None,
|
|
alibi=False,
|
|
new_decoder_architecture=False,
|
|
multi_query=True,
|
|
parallel_attn=True,
|
|
bias=False,
|
|
bos_token_id=11,
|
|
eos_token_id=11,
|
|
**kwargs,
|
|
):
|
|
logger.warning_once(
|
|
"\nWARNING: You are currently loading Falcon using legacy code contained in the model repository. Falcon has now been fully ported into the Hugging Face transformers library. "
|
|
"For the most up-to-date and high-performance version of the Falcon model code, please update to the latest version of transformers and then load the model "
|
|
"without the trust_remote_code=True argument.\n"
|
|
)
|
|
self.vocab_size = vocab_size
|
|
|
|
n_embed = kwargs.pop("n_embed", None)
|
|
self.hidden_size = hidden_size if n_embed is None else n_embed
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.use_cache = use_cache
|
|
self.hidden_dropout = hidden_dropout
|
|
self.attention_dropout = attention_dropout
|
|
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
|
self.alibi = alibi
|
|
self.new_decoder_architecture = new_decoder_architecture
|
|
self.multi_query = multi_query
|
|
self.parallel_attn = parallel_attn
|
|
self.bias = bias
|
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
@property
|
|
def head_dim(self):
|
|
return self.hidden_size // self.num_attention_heads
|
|
|
|
@property
|
|
def rotary(self):
|
|
return not self.alibi |