nazneen commited on
Commit
4ae864e
1 Parent(s): 3276f0f

model documentation

Browse files
Files changed (1) hide show
  1. README.md +178 -7
README.md CHANGED
@@ -1,7 +1,178 @@
1
- ---
2
- license: mit
3
- ---
4
-
5
- ## MiniLM: 6 Layer Version
6
-
7
- This is a 6 layer version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/) by keeping only every second layer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+
4
+ ---
5
+
6
+
7
+ # Model Card for MiniLM: 6 Layer Version
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+ This is a 6 layer version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/) by keeping only every second layer.
14
+
15
+ - **Developed by:** Nils Reimers
16
+ - **Shared by [Optional]:** Nils Reimers
17
+ - **Model type:** Feature Extraction
18
+ - **Language(s) (NLP):** More information needed
19
+ - **License:** MIT
20
+ - **Parent Model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/)
21
+ - **Resources for more information:** More information needed.
22
+
23
+
24
+
25
+ # Uses
26
+
27
+
28
+ ## Direct Use
29
+ This model can be used for the task of feature extraction.
30
+
31
+ ## Downstream Use [Optional]
32
+
33
+ More information needed.
34
+
35
+ ## Out-of-Scope Use
36
+
37
+ The model should not be used to intentionally create hostile or alienating environments for people.
38
+
39
+ # Bias, Risks, and Limitations
40
+
41
+
42
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
43
+
44
+
45
+
46
+ ## Recommendations
47
+
48
+
49
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
50
+
51
+ # Training Details
52
+
53
+ ## Training Data
54
+
55
+ More information needed
56
+
57
+ ## Training Procedure
58
+
59
+
60
+ ### Preprocessing
61
+
62
+ More information needed
63
+
64
+
65
+
66
+
67
+
68
+ ### Speeds, Sizes, Times
69
+ More information needed
70
+
71
+
72
+ # Evaluation
73
+
74
+
75
+ ## Testing Data, Factors & Metrics
76
+
77
+ ### Testing Data
78
+
79
+ More information needed
80
+
81
+
82
+ ### Factors
83
+ More information needed
84
+
85
+ ### Metrics
86
+
87
+ More information needed
88
+
89
+
90
+ ## Results
91
+
92
+ More information needed
93
+
94
+
95
+ # Model Examination
96
+
97
+ More information needed
98
+
99
+ # Environmental Impact
100
+
101
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
102
+
103
+ - **Hardware Type:** More information needed
104
+ - **Hours used:** More information needed
105
+ - **Cloud Provider:** More information needed
106
+ - **Compute Region:** More information needed
107
+ - **Carbon Emitted:** More information needed
108
+
109
+ # Technical Specifications [optional]
110
+
111
+ ## Model Architecture and Objective
112
+
113
+ More information needed
114
+
115
+ ## Compute Infrastructure
116
+
117
+ More information needed
118
+
119
+ ### Hardware
120
+
121
+
122
+ More information needed
123
+
124
+ ### Software
125
+
126
+ More information needed.
127
+
128
+ # Citation
129
+
130
+
131
+ **BibTeX:**
132
+
133
+
134
+ ```bibtex
135
+ @misc{wang2020minilm,
136
+ title={MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers},
137
+ author={Wenhui Wang and Furu Wei and Li Dong and Hangbo Bao and Nan Yang and Ming Zhou},
138
+ year={2020},
139
+ eprint={2002.10957},
140
+ archivePrefix={arXiv},
141
+ primaryClass={cs.CL}
142
+ }
143
+ ```
144
+
145
+
146
+
147
+
148
+ # Glossary [optional]
149
+ More information needed
150
+
151
+ # More Information [optional]
152
+ More information needed
153
+
154
+
155
+ # Model Card Authors [optional]
156
+
157
+ Nils Reimers in collaboration with Ezi Ozoani and the Hugging Face team
158
+
159
+
160
+ # Model Card Contact
161
+
162
+ More information needed
163
+
164
+ # How to Get Started with the Model
165
+
166
+ Use the code below to get started with the model.
167
+
168
+ <details>
169
+ <summary> Click to expand </summary>
170
+
171
+ ```python
172
+ from transformers import AutoTokenizer, AutoModel
173
+
174
+ tokenizer = AutoTokenizer.from_pretrained("nreimers/MiniLM-L6-H384-uncased")
175
+
176
+ model = AutoModel.from_pretrained("nreimers/MiniLM-L6-H384-uncased")
177
+ ```
178
+ </details>