nroggendorff's picture
End of training
9708976 verified
---
base_model: nroggendorff/epicrealism
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Text-to-image finetuning - nroggendorff/anime-girl-diffusion
This pipeline was finetuned from **nroggendorff/epicrealism** on the **nroggendorff/grill** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['a grill with food on it']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("nroggendorff/anime-girl-diffusion", torch_dtype=torch.float16)
prompt = "a grill with food on it"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 7500
* Learning rate: 1e-05
* Batch size: 16
* Gradient accumulation steps: 1
* Image resolution: 512
* Mixed-precision: fp16
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]