End of training
Browse files- README.md +81 -196
- config.json +83 -0
- model.safetensors +3 -0
- preprocessor_config.json +9 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,84 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
###
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/hubert-large-ll60k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: huber_arabic_mdd_v2
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# huber_arabic_mdd_v2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2858
|
21 |
+
- Wer: 0.0564
|
22 |
+
- Cer: 0.0459
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0003
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 500
|
50 |
+
- num_epochs: 20
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
56 |
+
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
|
57 |
+
| 3.3219 | 0.9951 | 102 | 3.2861 | 1.0 | 1.0 |
|
58 |
+
| 3.2152 | 2.0 | 205 | 3.1685 | 1.0 | 1.0 |
|
59 |
+
| 2.5507 | 2.9951 | 307 | 2.3708 | 0.9718 | 0.9819 |
|
60 |
+
| 0.5766 | 4.0 | 410 | 0.6351 | 0.2216 | 0.2046 |
|
61 |
+
| 0.2255 | 4.9951 | 512 | 0.3469 | 0.0889 | 0.0740 |
|
62 |
+
| 0.1148 | 6.0 | 615 | 0.3393 | 0.0776 | 0.0635 |
|
63 |
+
| 0.1222 | 6.9951 | 717 | 0.3368 | 0.0688 | 0.0535 |
|
64 |
+
| 0.075 | 8.0 | 820 | 0.2846 | 0.0610 | 0.0479 |
|
65 |
+
| 0.0631 | 8.9951 | 922 | 0.2948 | 0.0589 | 0.0453 |
|
66 |
+
| 0.0365 | 10.0 | 1025 | 0.2657 | 0.0552 | 0.0432 |
|
67 |
+
| 0.0484 | 10.9951 | 1127 | 0.2631 | 0.0573 | 0.0458 |
|
68 |
+
| 0.046 | 12.0 | 1230 | 0.2817 | 0.0572 | 0.0462 |
|
69 |
+
| 0.0326 | 12.9951 | 1332 | 0.2807 | 0.0587 | 0.0473 |
|
70 |
+
| 0.0379 | 14.0 | 1435 | 0.2682 | 0.0590 | 0.0479 |
|
71 |
+
| 0.0328 | 14.9951 | 1537 | 0.2773 | 0.0545 | 0.0440 |
|
72 |
+
| 0.0398 | 16.0 | 1640 | 0.2727 | 0.0576 | 0.0462 |
|
73 |
+
| 0.0165 | 16.9951 | 1742 | 0.2844 | 0.0573 | 0.0466 |
|
74 |
+
| 0.0201 | 18.0 | 1845 | 0.2812 | 0.0564 | 0.0455 |
|
75 |
+
| 0.0207 | 18.9951 | 1947 | 0.2860 | 0.0569 | 0.0465 |
|
76 |
+
| 0.0194 | 19.9024 | 2040 | 0.2858 | 0.0564 | 0.0459 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.40.0
|
82 |
+
- Pytorch 2.2.1+cu121
|
83 |
+
- Datasets 2.19.0
|
84 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/hubert-large-ll60k",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"HubertForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"classifier_proj_size": 256,
|
11 |
+
"conv_bias": true,
|
12 |
+
"conv_dim": [
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512,
|
19 |
+
512
|
20 |
+
],
|
21 |
+
"conv_kernel": [
|
22 |
+
10,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
2,
|
28 |
+
2
|
29 |
+
],
|
30 |
+
"conv_stride": [
|
31 |
+
5,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2,
|
37 |
+
2
|
38 |
+
],
|
39 |
+
"ctc_loss_reduction": "mean",
|
40 |
+
"ctc_zero_infinity": false,
|
41 |
+
"do_stable_layer_norm": true,
|
42 |
+
"eos_token_id": 2,
|
43 |
+
"feat_extract_activation": "gelu",
|
44 |
+
"feat_extract_dropout": 0.0,
|
45 |
+
"feat_extract_norm": "layer",
|
46 |
+
"feat_proj_dropout": 0.0,
|
47 |
+
"feat_proj_layer_norm": true,
|
48 |
+
"final_dropout": 0.0,
|
49 |
+
"gradient_checkpointing": false,
|
50 |
+
"hidden_act": "gelu",
|
51 |
+
"hidden_dropout": 0.1,
|
52 |
+
"hidden_size": 1024,
|
53 |
+
"initializer_range": 0.02,
|
54 |
+
"intermediate_size": 4096,
|
55 |
+
"layer_norm_eps": 1e-05,
|
56 |
+
"layerdrop": 0.1,
|
57 |
+
"mask_channel_length": 10,
|
58 |
+
"mask_channel_min_space": 1,
|
59 |
+
"mask_channel_other": 0.0,
|
60 |
+
"mask_channel_prob": 0.0,
|
61 |
+
"mask_channel_selection": "static",
|
62 |
+
"mask_feature_length": 10,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.0,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_min_space": 1,
|
68 |
+
"mask_time_other": 0.0,
|
69 |
+
"mask_time_prob": 0.05,
|
70 |
+
"mask_time_selection": "static",
|
71 |
+
"model_type": "hubert",
|
72 |
+
"num_attention_heads": 16,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"pad_token_id": 37,
|
78 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
79 |
+
"torch_dtype": "float32",
|
80 |
+
"transformers_version": "4.40.0",
|
81 |
+
"use_weighted_layer_sum": false,
|
82 |
+
"vocab_size": 40
|
83 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:229381c79d3019ad0dd55ec05ab21e950e0809f3e041f4decfc3b5f354e88239
|
3 |
+
size 1261970648
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7179dadbb4ed79ab6e1c7312ec6f3c09e23650d2da4db5c1340ffbbd70e822ff
|
3 |
+
size 5048
|