File size: 2,923 Bytes
d0f7a63
4fac17e
 
 
 
 
 
 
 
 
d0f7a63
 
4fac17e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec_arabic_mdd_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec_arabic_mdd_v2

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2736
- Wer: 0.0492
- Cer: 0.0378

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 5.2969        | 0.9951  | 102  | 4.4152          | 1.0    | 1.0    |
| 3.2462        | 2.0     | 205  | 3.2917          | 1.0    | 1.0    |
| 3.1998        | 2.9951  | 307  | 3.2287          | 1.0    | 1.0    |
| 3.2577        | 4.0     | 410  | 3.1610          | 1.0    | 1.0    |
| 2.4548        | 4.9951  | 512  | 2.5563          | 0.9881 | 0.9914 |
| 0.678         | 6.0     | 615  | 0.7636          | 0.2986 | 0.2701 |
| 0.1777        | 6.9951  | 717  | 0.3790          | 0.0925 | 0.0781 |
| 0.1097        | 8.0     | 820  | 0.3732          | 0.0865 | 0.0694 |
| 0.0737        | 8.9951  | 922  | 0.3027          | 0.0641 | 0.0511 |
| 0.0526        | 10.0    | 1025 | 0.2834          | 0.0699 | 0.0578 |
| 0.0471        | 10.9951 | 1127 | 0.2601          | 0.0541 | 0.0435 |
| 0.0349        | 12.0    | 1230 | 0.2803          | 0.0518 | 0.0396 |
| 0.029         | 12.9951 | 1332 | 0.2710          | 0.0502 | 0.0378 |
| 0.0225        | 14.0    | 1435 | 0.2835          | 0.0494 | 0.0378 |
| 0.023         | 14.9951 | 1537 | 0.2909          | 0.0483 | 0.0368 |
| 0.0247        | 16.0    | 1640 | 0.2725          | 0.0480 | 0.0361 |
| 0.035         | 16.9951 | 1742 | 0.2696          | 0.0489 | 0.0372 |
| 0.0156        | 18.0    | 1845 | 0.2742          | 0.0482 | 0.0364 |
| 0.0183        | 18.9951 | 1947 | 0.2741          | 0.0492 | 0.0376 |
| 0.0179        | 19.9024 | 2040 | 0.2736          | 0.0492 | 0.0378 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1