File size: 2,923 Bytes
d0f7a63 4fac17e d0f7a63 4fac17e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec_arabic_mdd_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec_arabic_mdd_v2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2736
- Wer: 0.0492
- Cer: 0.0378
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 5.2969 | 0.9951 | 102 | 4.4152 | 1.0 | 1.0 |
| 3.2462 | 2.0 | 205 | 3.2917 | 1.0 | 1.0 |
| 3.1998 | 2.9951 | 307 | 3.2287 | 1.0 | 1.0 |
| 3.2577 | 4.0 | 410 | 3.1610 | 1.0 | 1.0 |
| 2.4548 | 4.9951 | 512 | 2.5563 | 0.9881 | 0.9914 |
| 0.678 | 6.0 | 615 | 0.7636 | 0.2986 | 0.2701 |
| 0.1777 | 6.9951 | 717 | 0.3790 | 0.0925 | 0.0781 |
| 0.1097 | 8.0 | 820 | 0.3732 | 0.0865 | 0.0694 |
| 0.0737 | 8.9951 | 922 | 0.3027 | 0.0641 | 0.0511 |
| 0.0526 | 10.0 | 1025 | 0.2834 | 0.0699 | 0.0578 |
| 0.0471 | 10.9951 | 1127 | 0.2601 | 0.0541 | 0.0435 |
| 0.0349 | 12.0 | 1230 | 0.2803 | 0.0518 | 0.0396 |
| 0.029 | 12.9951 | 1332 | 0.2710 | 0.0502 | 0.0378 |
| 0.0225 | 14.0 | 1435 | 0.2835 | 0.0494 | 0.0378 |
| 0.023 | 14.9951 | 1537 | 0.2909 | 0.0483 | 0.0368 |
| 0.0247 | 16.0 | 1640 | 0.2725 | 0.0480 | 0.0361 |
| 0.035 | 16.9951 | 1742 | 0.2696 | 0.0489 | 0.0372 |
| 0.0156 | 18.0 | 1845 | 0.2742 | 0.0482 | 0.0364 |
| 0.0183 | 18.9951 | 1947 | 0.2741 | 0.0492 | 0.0376 |
| 0.0179 | 19.9024 | 2040 | 0.2736 | 0.0492 | 0.0378 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|