File size: 1,187 Bytes
eada88b
 
 
 
 
 
 
 
 
ab13c7b
eada88b
e9fc112
eada88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9fc112
 
 
 
 
 
 
 
 
 
 
 
 
 
eada88b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: mit
datasets:
- nsarrazin/lichess-games-2023-01
pipeline_tag: text-generation
tags:
- chess
---

A 231M parameter base model trained on 4.4B tokens of lichess games from January 2023 that ended in checkmate (filtered out games that were won because of time).

## Inference
```py
from transformers import GPT2LMHeadModel, AutoTokenizer

model = GPT2LMHeadModel.from_pretrained("nsarrazin/chessformer").eval()
tokenizer = AutoTokenizer.from_pretrained("nsarrazin/chessformer")

moves = " ".join(["e2e4", "e7e5", "d2d4", "d7d5"])

model_inputs = tokenizer(moves, return_tensors="pt")
gen_tokens = model.generate(**model_inputs, max_new_tokens=1)[0]
next_move = tokenizer.decode(gen_tokens[-1])

print(next_move) #d4e5
```

### End of game detection

The model also has three special tokens for end game detection `<BLACK_WIN>`, `<WHITE_WIN>` and `<DRAW>`. This can be useful for implementing beam search strategies. 

```py
moves = " ".join(["f2f3", "e7e5", "g2g4", "d8h4"])

model_inputs = tokenizer(moves, return_tensors="pt")
gen_tokens = model.generate(**model_inputs, max_new_tokens=1)[0]
next_move = tokenizer.decode(gen_tokens[-1])

print(next_move) # <BLACK_WIN>
```