--- license: mit language: - en - fr - de - it - es - pt - pl - nl - ru pipeline_tag: token-classification inference: false tags: - token-classification - entity-recognition - foundation-model - feature-extraction - mBERT - Multilingual Bert - BERT - generic --- # SOTA Entity Recognition Multilingual Foundation Model by NuMind đŸ”„ This model provides the best embedding for the Entity Recognition task and supports 9+ languages. **Checkout other models by NuMind:** * SOTA Entity Recognition Foundation Model in English: [link](https://huggingface.co/numind/entity-recognition-general-sota-v1) * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1) ## About [Multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) finetunned on an artificially annotated multilingual subset of [Oscar dataset](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201). This model provides domain & language independent embedding for Entity Recognition Task. We fine-tunned it only on 9 languages but the model can generalize over other languages that are supported by the Multilingual BERT. **Metrics:** Read more about evaluation protocol & datasets in our [blog post](https://www.numind.ai/blog/a-foundation-model-for-entity-recognition) | Model | F1 macro | |----------|----------| | bert-base-multilingual-cased | 0.5206 | | ours | 0.5892 | | ours + two emb | 0.6231 | ## Usage Embeddings can be used out of the box or fine-tuned on specific datasets. Get embeddings: ```python import torch import transformers model = transformers.AutoModel.from_pretrained( 'numind/NuNER-multilingual-v0.1', output_hidden_states=True, ) tokenizer = transformers.AutoTokenizer.from_pretrained( 'numind/NuNER-multilingual-v0.1', ) text = [ "NuMind is an AI company based in Paris and USA.", "NuMind est une entreprise d'IA basĂ©e Ă  Paris et aux États-Unis.", "See other models from us on https://huggingface.co/numind" ] encoded_input = tokenizer( text, return_tensors='pt', padding=True, truncation=True ) output = model(**encoded_input) # two emb trick: for better quality emb = torch.cat( (output.hidden_states[-1], output.hidden_states[-7]), dim=2 ) # single emb: for better speed # emb = output.hidden_states[-1] ``` ## Citation ``` @misc{bogdanov2024nuner, title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, author={Sergei Bogdanov and Alexandre Constantin and TimothĂ©e Bernard and Benoit CrabbĂ© and Etienne Bernard}, year={2024}, eprint={2402.15343}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```