Alexandre-Numind
commited on
Commit
•
a6cf5eb
1
Parent(s):
88c67e6
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-classification
|
6 |
---
|
7 |
+
Usage:
|
8 |
+
|
9 |
+
## Model
|
10 |
+
|
11 |
+
Base version of e5-v2 finetunned on an annotated subbset of C4 (Numind/C4_sentiment-analysis). This model provide generic embedding for sentiment analysis.
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
Below is an example to encode text and get embedding.
|
16 |
+
|
17 |
+
```python
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
from torch import Tensor
|
21 |
+
from transformers import AutoTokenizer, AutoModel
|
22 |
+
|
23 |
+
|
24 |
+
model = AutoModel.from_pretrained("Numind/e5-base-SA")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("Numind/e5-base-SA")
|
26 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
27 |
+
model.to(device)
|
28 |
+
|
29 |
+
size = 256
|
30 |
+
text = "This movie is amazing"
|
31 |
+
|
32 |
+
encoding = tokenizer(
|
33 |
+
text,
|
34 |
+
truncation=True,
|
35 |
+
padding='max_length',
|
36 |
+
max_length= size,
|
37 |
+
)
|
38 |
+
|
39 |
+
emb = model(
|
40 |
+
torch.reshape(torch.tensor(encoding.input_ids),(1,len(encoding.input_ids))).to(device),output_hidden_states=True
|
41 |
+
).hidden_states[-1].cpu().detach()
|
42 |
+
|
43 |
+
embText = torch.mean(emb,axis = 1)
|
44 |
+
|
45 |
+
```
|