Safetensors
English
llava_next
custom_code
File size: 13,917 Bytes
67e706d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn.functional as F
from peft import PeftModel
from transformers import AutoTokenizer, AutoModel


import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn

from transformers import AutoModel, AutoConfig
from transformers import LlavaNextProcessor
from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig
from transformers.models.llava_next.modeling_llava_next import LlavaNextCausalLMOutputWithPast, image_size_to_num_patches

class NVMMEmbedModel(LlavaNextForConditionalGeneration):
    def __init__(self, config: LlavaNextConfig):
        super().__init__(config)

        nvemb_config = AutoConfig.from_pretrained(config.retriever, trust_remote_code=True)
        nvemb_model = AutoModel.from_config(nvemb_config, trust_remote_code=True)
        self.language_model = nvemb_model.embedding_model
        self.latent_attention_model = nvemb_model.latent_attention_model

        self.preprocess_fn = LlavaNextProcessor.from_pretrained(config._name_or_path)
        self.preprocess_fn.tokenizer.padding_side = config.padding_side
        self.preprocess_fn.tokenizer.add_eos_token = config.add_eos_token
        self.global_image_patch_only = config.global_image_patch_only


    def create_pool_mask(self, attention_mask, instruction_lengths):
        pool_mask = attention_mask.clone()
        if instruction_lengths.unique().shape[0] == 1:
            length = instruction_lengths[0].item()
            pool_mask[:, :length] = 0
        else:
            for i, length in enumerate(instruction_lengths): 
                pool_mask[i, :length] = 0
        return pool_mask

    def calculate_instruction_length(self, tokenizer, prompts, prefix):
        instructions = []
        instruction_lengths = []
        for prompt in prompts:
            if prefix in prompt:
                instruction = prompt.split(prefix)[0]
                input_ids = tokenizer(instruction, return_tensors=None)['input_ids']
                instruction_length = len(input_ids)
                if '<image>' in instruction:
                    instruction_length += (576 - 1)
                instruction_lengths.append(instruction_length)
            else:
                instruction_lengths.append(0)
        return instruction_lengths

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        image_sizes: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        instruction_lengths: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        vision_feature_layer: Optional[int] = None,
        vision_feature_select_strategy: Optional[str] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration

        >>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")

        >>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "[INST]  \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_feature_layer = (
            vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
        )
        vision_feature_select_strategy = (
            vision_feature_select_strategy
            if vision_feature_select_strategy is not None
            else self.config.vision_feature_select_strategy
        )
        clip_global_image_feature = None

        if inputs_embeds is None:
            # 1. Extract the input embeddings
            # In case image_token_index is not in the embeddings (extra token but embedding don't have it)
            for_inputs_embeds_ids = input_ids.clone()
            for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
            for_inputs_embeds_ids[(input_ids == 32001)] = 2 #We use tokenizer from Llava-Next but later replace PAD with EOS Token
            inputs_embeds = self.language_model.get_input_embeddings()(for_inputs_embeds_ids)
            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
                # ! infer image_num_patches from image_sizes
                image_num_patches = [
                    image_size_to_num_patches(
                        image_size=imsize,
                        grid_pinpoints=self.config.image_grid_pinpoints,
                        patch_size=self.config.vision_config.image_size,
                    )
                    for imsize in image_sizes
                ]
                # figure out if pixel_values is concatenated or stacked
                if pixel_values.dim() == 5:
                    # stacking when input is (batch_size, num_patches, num_channels, height, width)
                    _pixel_values_list = [
                        pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
                    ]
                    if pixel_values.shape[1] == 1:
                        image_num_patches = [1 for imsize in image_sizes]
                    pixel_values = torch.cat(_pixel_values_list, dim=0)
                elif pixel_values.dim() != 4:
                    # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
                    raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")

                image_features = self.vision_tower(pixel_values, output_hidden_states=True)
                clip_global_image_feature = image_features.pooler_output
                selected_image_feature = image_features.hidden_states[vision_feature_layer]
                
                if vision_feature_select_strategy == "default":
                    selected_image_feature = selected_image_feature[:, 1:]
                elif vision_feature_select_strategy == "full":
                    selected_image_feature = selected_image_feature
                
                image_features = self.multi_modal_projector(selected_image_feature)
                image_features = torch.split(image_features, image_num_patches, dim=0)

                # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"

                image_features, feature_lens = self.pack_image_features(
                    image_features,
                    image_sizes,
                    image_newline=self.image_newline,
                )

                inputs_embeds = inputs_embeds.to(image_features.dtype)
                inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
                    image_features,
                    feature_lens,
                    inputs_embeds,
                    input_ids,
                    attention_mask,
                    position_ids,
                    labels=labels,
                )

            # pixel_values is not None but is empty ---> text only cases
            elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
                # there are no images
                pass

            # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
            # generation with cache
            elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)

                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
        
        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pool_mask = self.create_pool_mask(attention_mask, instruction_lengths)
        
        embeds = self.latent_attention_model(
                outputs.last_hidden_state,
                pool_mask,
        )


        return LlavaNextCausalLMOutputWithPast(
            loss=None,
            logits=None,
            past_key_values=None,
            hidden_states=embeds,
            attentions=outputs.attentions,
            image_hidden_states=clip_global_image_feature,
        )

    @torch.no_grad()
    def encode(self, inputs, is_query = False, instruction = None, max_length = 512, query_prefix = 'Query: '):
        assert type(inputs) == list, 'inputs should be a list of dictionay'
        prompts, imgs = [], []
        if is_query:
            if instruction is not None:
                prompt_template = f"Instruct: {instruction}\n{query_prefix}<image>\n<text>"
            else:
                prompt_template = f"{query_prefix}<image>\n<text>"
        else:
            prompt_template = f"<image>\n<text>"
    
        for input_ in inputs:
            if 'img' in input_:
                imgs.append(input_['img'])
                prompt = prompt_template
            else:
                prompt = prompt_template.replace('<image>\n', '')

            if ('txt' in input_) and (input_['txt'] is not None):
                prompt = prompt.replace('<text>', input_['txt'])
            else:
                prompt = prompt.replace('<text>', '')
            
            prompts.append(prompt)
        
        if len(imgs) == 0:
            imgs = None
        collated_features = self.preprocess_fn(prompts, imgs, return_tensors="pt", padding="longest", max_length=max_length, truncation=True).to(self.device)
        if self.global_image_patch_only and (imgs is not None): # we only use global image patch as default
            collated_features['pixel_values'] = collated_features['pixel_values'][:, 0:1]

        instruction_lengths = self.calculate_instruction_length(self.preprocess_fn.tokenizer, prompts, f'\n{query_prefix}')
        collated_features['instruction_lengths'] = torch.tensor(instruction_lengths).to(self.device)

        return self(**collated_features)


AutoModel.register(LlavaNextConfig, NVMMEmbedModel)
NVMMEmbedModel.register_for_auto_class("AutoModel")