File size: 28,083 Bytes
54acb42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34dd0a1
54acb42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd7b4c
54acb42
 
 
 
 
 
 
 
 
 
 
 
 
dcd7b4c
54acb42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd7b4c
 
54acb42
 
dcd7b4c
 
54acb42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
#!/usr/bin/env python3

# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.


import torch
import torch.nn as nn
from timm.models.registry import register_model
import math
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
from timm.models._builder import resolve_pretrained_cfg
try:
    from timm.models._builder import _update_default_kwargs as update_args
except:
    from timm.models._builder import _update_default_model_kwargs as update_args
from timm.models.vision_transformer import Mlp, PatchEmbed
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
import torch.nn.functional as F
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from einops import rearrange, repeat

from transformers import PreTrainedModel

from .configuration_mambavision import MambaVisionConfig


def _cfg(url='', **kwargs):
    return {'url': url,
            'num_classes': 1000,
            'input_size': (3, 224, 224),
            'pool_size': None,
            'crop_pct': 0.875,
            'interpolation': 'bicubic',
            'fixed_input_size': True,
            'mean': (0.485, 0.456, 0.406),
            'std': (0.229, 0.224, 0.225),
            **kwargs
            }


default_cfgs = {
    'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
                           crop_pct=1.0,
                           input_size=(3, 224, 224),
                           crop_mode='center'),
    'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
                            crop_pct=0.98,
                            input_size=(3, 224, 224),
                            crop_mode='center'),
    'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
                           crop_pct=0.93,
                           input_size=(3, 224, 224),
                           crop_mode='center'),
    'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
                           crop_pct=1.0,
                           input_size=(3, 224, 224),
                           crop_mode='center'),
    'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
                           crop_pct=1.0,
                           input_size=(3, 224, 224),
                           crop_mode='center'),
    'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
                            crop_pct=1.0,
                            input_size=(3, 224, 224),
                            crop_mode='center')                                
}


def window_partition(x, window_size):
    """
    Args:
        x: (B, C, H, W)
        window_size: window size
        h_w: Height of window
        w_w: Width of window
    Returns:
        local window features (num_windows*B, window_size*window_size, C)
    """
    B, C, H, W = x.shape
    x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
    windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: local window features (num_windows*B, window_size, window_size, C)
        window_size: Window size
        H: Height of image
        W: Width of image
    Returns:
        x: (B, C, H, W)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
    return x


def _load_state_dict(module, state_dict, strict=False, logger=None):
    """Load state_dict to a module.

    This method is modified from :meth:`torch.nn.Module.load_state_dict`.
    Default value for ``strict`` is set to ``False`` and the message for
    param mismatch will be shown even if strict is False.

    Args:
        module (Module): Module that receives the state_dict.
        state_dict (OrderedDict): Weights.
        strict (bool): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
        logger (:obj:`logging.Logger`, optional): Logger to log the error
            message. If not specified, print function will be used.
    """
    unexpected_keys = []
    all_missing_keys = []
    err_msg = []

    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata
    
    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(state_dict, prefix, local_metadata, True,
                                     all_missing_keys, unexpected_keys,
                                     err_msg)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(module)
    load = None
    missing_keys = [
        key for key in all_missing_keys if 'num_batches_tracked' not in key
    ]

    if unexpected_keys:
        err_msg.append('unexpected key in source '
                       f'state_dict: {", ".join(unexpected_keys)}\n')
    if missing_keys:
        err_msg.append(
            f'missing keys in source state_dict: {", ".join(missing_keys)}\n')

    
    if len(err_msg) > 0:
        err_msg.insert(
            0, 'The model and loaded state dict do not match exactly\n')
        err_msg = '\n'.join(err_msg)
        if strict:
            raise RuntimeError(err_msg)
        elif logger is not None:
            logger.warning(err_msg)
        else:
            print(err_msg)


def _load_checkpoint(model,
                    filename,
                    map_location='cpu',
                    strict=False,
                    logger=None):
    """Load checkpoint from a file or URI.

    Args:
        model (Module): Module to load checkpoint.
        filename (str): Accept local filepath, URL, ``torchvision://xxx``,
            ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
            details.
        map_location (str): Same as :func:`torch.load`.
        strict (bool): Whether to allow different params for the model and
            checkpoint.
        logger (:mod:`logging.Logger` or None): The logger for error message.

    Returns:
        dict or OrderedDict: The loaded checkpoint.
    """
    checkpoint = torch.load(filename, map_location=map_location)
    if not isinstance(checkpoint, dict):
        raise RuntimeError(
            f'No state_dict found in checkpoint file {filename}')
    if 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    elif 'model' in checkpoint:
        state_dict = checkpoint['model']
    else:
        state_dict = checkpoint
    if list(state_dict.keys())[0].startswith('module.'):
        state_dict = {k[7:]: v for k, v in state_dict.items()}

    if sorted(list(state_dict.keys()))[0].startswith('encoder'):
        state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}

    _load_state_dict(model, state_dict, strict, logger)
    return checkpoint


class Downsample(nn.Module):
    """
    Down-sampling block"
    """

    def __init__(self,
                 dim,
                 keep_dim=False,
                 ):
        """
        Args:
            dim: feature size dimension.
            norm_layer: normalization layer.
            keep_dim: bool argument for maintaining the resolution.
        """

        super().__init__()
        if keep_dim:
            dim_out = dim
        else:
            dim_out = 2 * dim
        self.reduction = nn.Sequential(
            nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
        )

    def forward(self, x):
        x = self.reduction(x)
        return x


class PatchEmbed(nn.Module):
    """
    Patch embedding block"
    """

    def __init__(self, in_chans=3, in_dim=64, dim=96):
        """
        Args:
            in_chans: number of input channels.
            dim: feature size dimension.
        """
        # in_dim = 1
        super().__init__()
        self.proj = nn.Identity()
        self.conv_down = nn.Sequential(
            nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
            nn.BatchNorm2d(in_dim, eps=1e-4),
            nn.ReLU(),
            nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
            nn.BatchNorm2d(dim, eps=1e-4),
            nn.ReLU()
            )

    def forward(self, x):
        x = self.proj(x)
        x = self.conv_down(x)
        return x


class ConvBlock(nn.Module):

    def __init__(self, dim,
                 drop_path=0.,
                 layer_scale=None,
                 kernel_size=3):
        super().__init__()

        self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
        self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
        self.act1 = nn.GELU(approximate= 'tanh')
        self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
        self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
        self.layer_scale = layer_scale
        if layer_scale is not None and type(layer_scale) in [int, float]:
            self.g = nn.Parameter(layer_scale * torch.ones(dim))
            self.layer_scale = True
        else:
            self.layer_scale = False
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.act1(x)
        x = self.conv2(x)
        x = self.norm2(x)
        if self.layer_scale:
            x = x * self.g.view(1, -1, 1, 1)
        x = input + self.drop_path(x)
        return x


class MambaVisionMixer(nn.Module):
    def __init__(
        self,
        d_model,
        d_state=16,
        d_conv=4,
        expand=2,
        dt_rank="auto",
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        conv_bias=True,
        bias=False,
        use_fast_path=True, 
        layer_idx=None,
        device=None,
        dtype=None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.d_conv = d_conv
        self.expand = expand
        self.d_inner = int(self.expand * self.d_model)
        self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
        self.use_fast_path = use_fast_path
        self.layer_idx = layer_idx
        self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)    
        self.x_proj = nn.Linear(
            self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
        )
        self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
        dt_init_std = self.dt_rank**-0.5 * dt_scale
        if dt_init == "constant":
            nn.init.constant_(self.dt_proj.weight, dt_init_std)
        elif dt_init == "random":
            nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
        else:
            raise NotImplementedError
        dt = torch.exp(
            torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        ).clamp(min=dt_init_floor)
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        with torch.no_grad():
            self.dt_proj.bias.copy_(inv_dt)
        self.dt_proj.bias._no_reinit = True
        A = repeat(
            torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
            "n -> d n",
            d=self.d_inner//2,
        ).contiguous()
        A_log = torch.log(A)
        self.A_log = nn.Parameter(A_log)
        self.A_log._no_weight_decay = True
        self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
        self.D._no_weight_decay = True
        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
        self.conv1d_x = nn.Conv1d(
            in_channels=self.d_inner//2,
            out_channels=self.d_inner//2,
            bias=conv_bias//2,
            kernel_size=d_conv,
            groups=self.d_inner//2,
            **factory_kwargs,
        )
        self.conv1d_z = nn.Conv1d(
            in_channels=self.d_inner//2,
            out_channels=self.d_inner//2,
            bias=conv_bias//2,
            kernel_size=d_conv,
            groups=self.d_inner//2,
            **factory_kwargs,
        )

    def forward(self, hidden_states):
        """
        hidden_states: (B, L, D)
        Returns: same shape as hidden_states
        """
        _, seqlen, _ = hidden_states.shape
        xz = self.in_proj(hidden_states)
        xz = rearrange(xz, "b l d -> b d l")
        x, z = xz.chunk(2, dim=1)
        A = -torch.exp(self.A_log.float())
        x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
        z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
        x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
        dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
        dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
        B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
        C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
        y = selective_scan_fn(x, 
                              dt, 
                              A, 
                              B, 
                              C, 
                              self.D.float(), 
                              z=None, 
                              delta_bias=self.dt_proj.bias.float(), 
                              delta_softplus=True, 
                              return_last_state=None)
        
        y = torch.cat([y, z], dim=1)
        y = rearrange(y, "b d l -> b l d")
        out = self.out_proj(y)
        return out
    

class Attention(nn.Module):

    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            qk_norm=False,
            attn_drop=0.,
            proj_drop=0.,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        assert dim % num_heads == 0
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = True

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
             q, k, v,
                dropout_p=self.attn_drop.p,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(self, 
                 dim, 
                 num_heads, 
                 counter, 
                 transformer_blocks, 
                 mlp_ratio=4., 
                 qkv_bias=False, 
                 qk_scale=False, 
                 drop=0., 
                 attn_drop=0.,
                 drop_path=0., 
                 act_layer=nn.GELU, 
                 norm_layer=nn.LayerNorm, 
                 Mlp_block=Mlp,
                 layer_scale=None,
                 ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        if counter in transformer_blocks:
            self.mixer = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            norm_layer=norm_layer,
        )
        else:
            self.mixer = MambaVisionMixer(d_model=dim, 
                                          d_state=8,  
                                          d_conv=3,    
                                          expand=1
                                          )

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
        self.g_1 = nn.Parameter(layer_scale * torch.ones(dim))  if use_layer_scale else 1
        self.g_2 = nn.Parameter(layer_scale * torch.ones(dim))  if use_layer_scale else 1

    def forward(self, x):
        x = x + self.drop_path(self.g_1 * self.mixer(self.norm1(x)))
        x = x + self.drop_path(self.g_2 * self.mlp(self.norm2(x)))
        return x


class MambaVisionLayer(nn.Module):
    """
    MambaVision layer"
    """

    def __init__(self,
                 dim,
                 depth,
                 num_heads,
                 window_size,
                 conv=False,
                 downsample=True,
                 mlp_ratio=4.,
                 qkv_bias=True,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 layer_scale=None,
                 layer_scale_conv=None,
                 transformer_blocks = [],
    ):
        """
        Args:
            dim: feature size dimension.
            depth: number of layers in each stage.
            window_size: window size in each stage.
            conv: bool argument for conv stage flag.
            downsample: bool argument for down-sampling.
            mlp_ratio: MLP ratio.
            num_heads: number of heads in each stage.
            qkv_bias: bool argument for query, key, value learnable bias.
            qk_scale: bool argument to scaling query, key.
            drop: dropout rate.
            attn_drop: attention dropout rate.
            drop_path: drop path rate.
            norm_layer: normalization layer.
            layer_scale: layer scaling coefficient.
            layer_scale_conv: conv layer scaling coefficient.
            transformer_blocks: list of transformer blocks.
        """

        super().__init__()
        self.conv = conv
        self.transformer_block = False
        if conv:
            self.blocks = nn.ModuleList([ConvBlock(dim=dim,
                                                   drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                                   layer_scale=layer_scale_conv)
                                                   for i in range(depth)])
            self.transformer_block = False
        else:
            self.transformer_block = True
            self.blocks = nn.ModuleList([Block(dim=dim,
                                               counter=i, 
                                               transformer_blocks=transformer_blocks,
                                               num_heads=num_heads,
                                               mlp_ratio=mlp_ratio,
                                               qkv_bias=qkv_bias,
                                               qk_scale=qk_scale,
                                               drop=drop,
                                               attn_drop=attn_drop,
                                               drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                               layer_scale=layer_scale)
                                               for i in range(depth)])
            self.transformer_block = True

        self.downsample = None if not downsample else Downsample(dim=dim)
        self.do_gt = False
        self.window_size = window_size

    def forward(self, x):
        _, _, H, W = x.shape

        if self.transformer_block:
            pad_r = (self.window_size - W % self.window_size) % self.window_size
            pad_b = (self.window_size - H % self.window_size) % self.window_size
            if pad_r > 0 or pad_b > 0:
                x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
                _, _, Hp, Wp = x.shape
            else:
                Hp, Wp = H, W
            x = window_partition(x, self.window_size)

        for _, blk in enumerate(self.blocks):
            x = blk(x)
        if self.transformer_block:
            x = window_reverse(x, self.window_size, Hp, Wp)
            if pad_r > 0 or pad_b > 0:
                x = x[:, :, :H, :W].contiguous()
        if self.downsample is None:
            return x, x
        return self.downsample(x), x


class MambaVision(nn.Module):
    """
    MambaVision,
    """

    def __init__(self,
                 dim,
                 in_dim,
                 depths,
                 window_size,
                 mlp_ratio,
                 num_heads,
                 drop_path_rate=0.2,
                 in_chans=3,
                 num_classes=1000,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 layer_scale=None,
                 layer_scale_conv=None,
                 **kwargs):
        """
        Args:
            dim: feature size dimension.
            depths: number of layers in each stage.
            window_size: window size in each stage.
            mlp_ratio: MLP ratio.
            num_heads: number of heads in each stage.
            drop_path_rate: drop path rate.
            in_chans: number of input channels.
            num_classes: number of classes.
            qkv_bias: bool argument for query, key, value learnable bias.
            qk_scale: bool argument to scaling query, key.
            drop_rate: dropout rate.
            attn_drop_rate: attention dropout rate.
            norm_layer: normalization layer.
            layer_scale: layer scaling coefficient.
            layer_scale_conv: conv layer scaling coefficient.
        """
        super().__init__()
        num_features = int(dim * 2 ** (len(depths) - 1))
        self.num_classes = num_classes
        self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        self.levels = nn.ModuleList()
        for i in range(len(depths)):
            conv = True if (i == 0 or i == 1) else False
            level = MambaVisionLayer(dim=int(dim * 2 ** i),
                                     depth=depths[i],
                                     num_heads=num_heads[i],
                                     window_size=window_size[i],
                                     mlp_ratio=mlp_ratio,
                                     qkv_bias=qkv_bias,
                                     qk_scale=qk_scale,
                                     conv=conv,
                                     drop=drop_rate,
                                     attn_drop=attn_drop_rate,
                                     drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
                                     downsample=(i < 3),
                                     layer_scale=layer_scale,
                                     layer_scale_conv=layer_scale_conv,
                                     transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
                                     )
            self.levels.append(level)
        self.norm = nn.BatchNorm2d(num_features)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, LayerNorm2d):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.ones_(m.weight)
            nn.init.zeros_(m.bias)

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'rpb'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        outs = []
        for level in self.levels:
            x, xo = level(x)
            outs.append(xo)
        x = self.norm(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        return x, outs

    def forward(self, x):
        x, outs = self.forward_features(x)
        x = self.head(x)
        return x

    def _load_state_dict(self, 
                         pretrained, 
                         strict: bool = False):
        _load_checkpoint(self, 
                         pretrained, 
                         strict=strict)


class MambaVisionModel(PreTrainedModel):
    config_class = MambaVisionConfig

    def __init__(self, config):
        super().__init__(config)
        self.model = MambaVision(
            depths=config.depths,
            num_heads=config.num_heads,
            window_size=config.window_size,
            dim=config.dim,
            in_dim=config.in_dim,
            mlp_ratio=config.mlp_ratio,
            layer_scale=config.layer_scale,
            layer_scale_conv=config.layer_scale_conv
        )

    def forward(self, tensor):
        return self.model.forward_features(tensor)


class MambaVisionModelForImageClassification(PreTrainedModel):
    config_class = MambaVisionConfig
    

    def __init__(self, config):
        super().__init__(config)
        self.model = MambaVision(
            depths=config.depths,
            num_heads=config.num_heads,
            window_size=config.window_size,
            dim=config.dim,
            in_dim=config.in_dim,
            mlp_ratio=config.mlp_ratio,
            layer_scale=config.layer_scale,
            layer_scale_conv=config.layer_scale_conv
        )

    def forward(self, tensor, labels=None):
        logits = self.model(tensor)
        if labels is not None:
            loss = torch.nn.cross_entropy(logits, labels)
            return {"loss": loss, "logits": logits}
        return {"logits": logits}