(venv2) D:\modelopt-windows-scripts\ONNX_PTQ>python D:\opset21_patrice.py --onnx_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\model.onnx" --output_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\model.onnx" Printing opset info of given input model... Domain: Version: 14 Domain: com.microsoft Version: 1 Printing opset info of output model... Domain: Version: 21 Domain: com.microsoft Version: 1 (venv2) D:\modelopt-windows-scripts\ONNX_PTQ>python quantize_script.py --model_name=mistralai/Mistral-Nemo-Instruct-2407 --onnx_path=D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\model.onnx --output_path="D:\GenAI\models\FP16_Mistral-Nemo-Instruct-2407_ONNX\opset_21\default_quant_cuda_ep_calib\model.onnx" --calibration_eps=cuda --Quantize-Script-- algo=awq_lite, dataset=cnn, calib_size=32, batch_size=1, block_size=128, add-position-ids=True, past-kv=True, rcalib=False, device=cpu, use_zero_point=False --Quantize-Script-- awqlite_alpha_step=0.1, awqlite_fuse_nodes=False, awqlite_run_per_subgraph=False, awqclip_alpha_step=0.05, awqclip_alpha_min=0.5, awqclip_bsz_col=1024, calibration_eps=['cuda'] D:\venv2\Lib\site-packages\transformers\models\auto\configuration_auto.py:1002: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead. warnings.warn( D:\venv2\Lib\site-packages\transformers\models\auto\tokenization_auto.py:809: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead. warnings.warn( --Quantize-Script-- number_of_batched_samples=32, batch-input-ids-list-len=32, batched_attention_mask=32 --Quantize-Script-- number of batched inputs = 32 INFO:root: Quantizing the model.... INFO:root:Quantization Mode: int4 INFO:root:Finding quantizable weights and augmenting graph output with input activations INFO:root:Augmenting took 0.031656503677368164 seconds INFO:root:Saving the model took 60.20284128189087 seconds 2024-11-05 22:37:34.5783341 [W:onnxruntime:, transformer_memcpy.cc:74 onnxruntime::MemcpyTransformer::ApplyImpl] 11 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message. 2024-11-05 22:37:34.5949880 [W:onnxruntime:, session_state.cc:1168 onnxruntime::VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf. 2024-11-05 22:37:34.6026375 [W:onnxruntime:, session_state.cc:1170 onnxruntime::VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments. Getting activation names maps...: 100%|██████████████████████████████████████████████████████| 280/280 [00:00pip list Package Version -------------------- ------------------------- aiohappyeyeballs 2.4.3 aiohttp 3.10.10 aiosignal 1.3.1 annotated-types 0.7.0 attrs 24.2.0 certifi 2024.8.30 charset-normalizer 3.4.0 cloudpickle 3.1.0 colorama 0.4.6 coloredlogs 15.0.1 cppimport 22.8.2 cupy-cuda12x 13.3.0 datasets 3.1.0 dill 0.3.8 fastrlock 0.8.2 filelock 3.16.1 flatbuffers 24.3.25 frozenlist 1.5.0 fsspec 2024.9.0 huggingface-hub 0.26.2 humanfriendly 10.0 idna 3.10 Jinja2 3.1.4 Mako 1.3.6 markdown-it-py 3.0.0 MarkupSafe 3.0.2 mdurl 0.1.2 mpmath 1.3.0 multidict 6.1.0 multiprocess 0.70.16 networkx 3.4.2 ninja 1.11.1.1 numpy 1.26.4 nvidia-modelopt 0.20.1.dev20+g299b7f8a098 onnx 1.16.0 onnx-graphsurgeon 0.5.2 onnxconverter-common 1.14.0 onnxmltools 1.12.0 onnxruntime-gpu 1.20.0 packaging 24.1 pandas 2.2.3 pip 24.0 propcache 0.2.0 protobuf 3.20.2 pyarrow 18.0.0 pybind11 2.13.6 pydantic 2.9.2 pydantic_core 2.23.4 Pygments 2.18.0 pyreadline3 3.5.4 python-dateutil 2.9.0.post0 pytz 2024.2 PyYAML 6.0.2 regex 2024.9.11 requests 2.32.3 rich 13.9.4 safetensors 0.4.5 scipy 1.14.1 setuptools 65.5.0 six 1.16.0 sympy 1.13.3 tokenizers 0.20.2 torch 2.4.0 tqdm 4.66.6 transformers 4.46.1 typing_extensions 4.12.2 tzdata 2024.2 urllib3 2.2.3 xxhash 3.5.0 yarl 1.17.1 [notice] A new release of pip is available: 24.0 -> 24.3.1 [notice] To update, run: python.exe -m pip install --upgrade pip (venv2) D:\modelopt-windows-scripts\ONNX_PTQ>