|
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict |
|
import torch |
|
import os |
|
import json |
|
import numpy as np |
|
from functools import partial |
|
from contextlib import nullcontext |
|
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.models.auto import AutoTokenizer |
|
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa |
|
from transformers import MistralModel, MistralConfig |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.utils import ( |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
from einops import rearrange, repeat |
|
from tqdm.auto import tqdm |
|
from datasets import Dataset |
|
from torch.utils.data import DataLoader |
|
from .configuration_nvembed import NVEmbedConfig, LatentAttentionConfig, BidirectionalMistralConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class NVEmbedFeatures(TypedDict): |
|
input_dict: torch.Tensor |
|
attention_mask: torch.Tensor |
|
pool_mask: torch.Tensor |
|
|
|
class BidirectionalMistralModel(MistralModel): |
|
config_class = BidirectionalMistralConfig |
|
|
|
def __init__(self, config: MistralConfig): |
|
super().__init__(config) |
|
for layer in self.layers: |
|
layer.self_attn.is_causal = False |
|
self._attn_implementation = "eager" |
|
|
|
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa" and not output_attentions: |
|
|
|
|
|
attention_mask = _prepare_4d_attention_mask_for_sdpa( |
|
attention_mask, inputs_embeds.dtype |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_attention_mask( |
|
attention_mask, inputs_embeds.dtype, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _move_to_device(maybe_tensor, device: torch.device): |
|
if torch.is_tensor(maybe_tensor): |
|
return maybe_tensor.to(device, non_blocking=device.type == "cuda") |
|
elif isinstance(maybe_tensor, dict): |
|
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()} |
|
elif isinstance(maybe_tensor, list): |
|
return [_move_to_device(x, device) for x in maybe_tensor] |
|
elif isinstance(maybe_tensor, tuple): |
|
return tuple([_move_to_device(x, device) for x in maybe_tensor]) |
|
elif isinstance(maybe_tensor, Mapping): |
|
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()}) |
|
else: |
|
return maybe_tensor |
|
|
|
def move_to_device(sample, device: torch.device): |
|
if device.type == "cpu": |
|
return sample |
|
|
|
if len(sample) == 0: |
|
return {} |
|
return _move_to_device(sample, device) |
|
|
|
|
|
def input_transform_func( |
|
tokenizer: PreTrainedTokenizerFast, |
|
examples: Dict[str, List], |
|
always_add_eos: bool, |
|
max_length: int, |
|
instruction: str, |
|
) -> BatchEncoding: |
|
if always_add_eos: |
|
examples['input_texts'] = [instruction + input_example + tokenizer.eos_token for input_example in examples['input_texts']] |
|
batch_dict = tokenizer( |
|
examples['input_texts'], |
|
max_length=max_length, |
|
padding=True, |
|
return_token_type_ids=False, |
|
return_tensors="pt", |
|
truncation=True) |
|
return batch_dict |
|
|
|
|
|
class PreNorm(torch.nn.Module): |
|
def __init__(self, dim, fn, context_dim = None): |
|
super().__init__() |
|
self.fn = fn |
|
self.norm = torch.nn.LayerNorm(dim) |
|
self.norm_context = torch.nn.LayerNorm(context_dim) if exists(context_dim) else None |
|
|
|
def forward(self, x, **kwargs): |
|
x = self.norm(x) |
|
if exists(self.norm_context): |
|
context = kwargs['context'] |
|
normed_context = self.norm_context(context) |
|
kwargs.update(context = normed_context) |
|
return self.fn(x, **kwargs) |
|
|
|
class GEGLU(torch.nn.Module): |
|
def forward(self, x): |
|
x, gates = x.chunk(2, dim = -1) |
|
return x * torch.nn.functional.gelu(gates) |
|
|
|
class FeedForward(torch.nn.Module): |
|
def __init__(self, dim, mult = 4): |
|
super().__init__() |
|
self.net = torch.nn.Sequential(torch.nn.Linear(dim, dim * mult * 2), |
|
GEGLU(), |
|
torch.nn.Linear(dim * mult, dim)) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
|
|
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False) |
|
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False) |
|
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False) |
|
|
|
def forward(self, x, context = None, mask = None): |
|
h = self.heads |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k, v = self.to_kv(context).chunk(2, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v)) |
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True): |
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
out = rearrange(out, '(b h) n d -> b n (h d)', h = h) |
|
return self.to_out(out) |
|
|
|
|
|
class LatentAttentionModel(PreTrainedModel): |
|
config_class = LatentAttentionConfig |
|
|
|
def __init__(self, config: LatentAttentionConfig): |
|
super().__init__(config) |
|
|
|
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head |
|
dim = config.hidden_dim |
|
|
|
self.cross_attend_blocks = torch.nn.ModuleList([ |
|
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head), |
|
context_dim = dim), |
|
PreNorm(latent_dim, FeedForward(latent_dim)), |
|
]) |
|
self.output_normalize = config.output_normalize |
|
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim))) |
|
|
|
def forward(self, hiddens, attention_mask: torch.Tensor=None): |
|
|
|
cross_attn, cross_ff = self.cross_attend_blocks |
|
b, *_, device = *hiddens.shape, hiddens.device |
|
x = repeat(self.latents, 'n d -> b n d', b = b) |
|
hiddens = cross_attn(hiddens, context = x, mask = None) + hiddens |
|
hiddens = cross_ff(hiddens) + hiddens |
|
if attention_mask !=None: |
|
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1) |
|
d = attention_mask.sum(dim=1, keepdim=True).float() |
|
hiddens = s / d |
|
if self.output_normalize: |
|
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1) |
|
return hiddens |
|
|
|
class NVEmbedModel(PreTrainedModel): |
|
config_class = NVEmbedConfig |
|
_no_split_modules = ["MistralDecoderLayer", "LatentAttentionModel"] |
|
|
|
def __init__(self, config: NVEmbedConfig): |
|
super().__init__(config) |
|
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config) |
|
self.embedding_model = AutoModel.from_config( |
|
config.text_config, |
|
) if config.text_config is not None else None |
|
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None |
|
self.padding_side = config.padding_side |
|
self.is_mask_instruction = config.is_mask_instruction |
|
self.add_eos = config.add_eos |
|
self.mask_type = config.mask_type |
|
if config.add_pad_token and self.tokenizer is not None: |
|
self.add_pad_token() |
|
|
|
def add_pad_token(self): |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
self.tokenizer.padding_side = self.padding_side |
|
|
|
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device): |
|
batch_dict = move_to_device(batch_dict, device) |
|
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None |
|
if (attention_mask is not None and |
|
self.padding_side == "right" and |
|
self.is_mask_instruction == True and |
|
instruction_lens > 0): |
|
|
|
attention_mask[:, :instruction_lens] = 0 |
|
features: NVEmbedFeatures = { |
|
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()), |
|
'attention_mask': batch_dict['attention_mask'], |
|
'pool_mask': attention_mask, |
|
} |
|
return features |
|
|
|
@torch.no_grad() |
|
def _do_encode(self, |
|
prompts: List[str], |
|
batch_size: int=1, |
|
instruction: str="", |
|
max_length: int=4096, |
|
num_workers: int=32, |
|
**kwargs |
|
) -> Union[np.ndarray, torch.FloatTensor]: |
|
dataset: Dataset = Dataset.from_dict({'input_texts': prompts}) |
|
dataset.set_transform(partial(input_transform_func, |
|
self.tokenizer, |
|
always_add_eos=True, |
|
max_length=max_length, |
|
instruction=instruction)) |
|
|
|
data_collator = DataCollatorWithPadding(self.tokenizer) |
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=False, |
|
drop_last=False, |
|
num_workers=num_workers, |
|
collate_fn=data_collator, |
|
pin_memory=True) |
|
|
|
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0: |
|
instruction_lens = len(self.tokenizer.tokenize(instruction)) |
|
else: |
|
instruction_lens = 0 |
|
|
|
encoded_embeds = [] |
|
device = next(self.embedding_model.parameters()).device |
|
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10): |
|
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device) |
|
embeds=self(**features)["sentence_embeddings"].squeeze(1) |
|
encoded_embeds.append(embeds) |
|
encoded_embeds = torch.cat(encoded_embeds, axis=0) |
|
if "return_numpy" in kwargs and kwargs.get("return_numpy"): |
|
encoded_embeds = encoded_embeds.cpu().detach().numpy() |
|
return encoded_embeds |
|
|
|
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, return_dict: bool=True): |
|
autocast_ctx = torch.autocast if torch.cuda.is_available() else nullcontext |
|
with autocast_ctx("cuda"): |
|
|
|
outputs = self.embedding_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
embeds = self.latent_attention_model( |
|
outputs.last_hidden_state, |
|
pool_mask, |
|
) |
|
if not return_dict: |
|
return (embeds,) |
|
return {"sentence_embeddings": embeds} |
|
|
|
|
|
@torch.no_grad() |
|
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs): |
|
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0: |
|
instruction_lens = len(self.tokenizer.tokenize(instruction)) |
|
else: |
|
instruction_lens = 0 |
|
|
|
device = next(self.embedding_model.parameters()).device |
|
batch_dict = input_transform_func(self.tokenizer, |
|
{"input_texts": [prompt for prompt in prompts]}, |
|
always_add_eos=True, |
|
max_length=max_length, |
|
instruction=instruction) |
|
|
|
features: NVEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device) |
|
return self(**features)["sentence_embeddings"].squeeze(1) |
|
|
|
|
|
|
|
AutoModel.register(NVEmbedConfig, NVEmbedModel) |
|
AutoModel.register(LatentAttentionConfig, LatentAttentionModel) |
|
AutoModel.register(BidirectionalMistralConfig, BidirectionalMistralModel) |
|
|
|
|
|
NVEmbedModel.register_for_auto_class("AutoModel") |
|
LatentAttentionModel.register_for_auto_class("AutoModel") |
|
BidirectionalMistralModel.register_for_auto_class("AutoModel") |
|
|