NV-Embed-v2 / modeling_nvembed.py
nada5's picture
Super-squash branch 'main' using huggingface_hub
2c0dadb verified
raw
history blame
18.7 kB
from typing import List, Union, Dict, Mapping, Optional, Tuple, TypedDict
import torch
import os
import json
import numpy as np
from functools import partial
from contextlib import nullcontext
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoTokenizer
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from transformers import MistralModel, MistralConfig
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import (
add_start_docstrings_to_model_forward,
logging,
)
from einops import rearrange, repeat
from tqdm.auto import tqdm
from datasets import Dataset
from torch.utils.data import DataLoader
from .configuration_nvembed import NVEmbedConfig, LatentAttentionConfig, BidirectionalMistralConfig
logger = logging.get_logger(__name__)
class NVEmbedFeatures(TypedDict):
input_dict: torch.Tensor
attention_mask: torch.Tensor
pool_mask: torch.Tensor
class BidirectionalMistralModel(MistralModel):
config_class = BidirectionalMistralConfig
def __init__(self, config: MistralConfig):
super().__init__(config)
for layer in self.layers:
layer.self_attn.is_causal = False
self._attn_implementation = "eager"
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, inputs_embeds.dtype
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_attention_mask(
attention_mask, inputs_embeds.dtype,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _move_to_device(maybe_tensor, device: torch.device):
if torch.is_tensor(maybe_tensor):
return maybe_tensor.to(device, non_blocking=device.type == "cuda")
elif isinstance(maybe_tensor, dict):
return {key: _move_to_device(value, device) for key, value in maybe_tensor.items()}
elif isinstance(maybe_tensor, list):
return [_move_to_device(x, device) for x in maybe_tensor]
elif isinstance(maybe_tensor, tuple):
return tuple([_move_to_device(x, device) for x in maybe_tensor])
elif isinstance(maybe_tensor, Mapping):
return type(maybe_tensor)({k: _move_to_device(v, device) for k, v in maybe_tensor.items()})
else:
return maybe_tensor
def move_to_device(sample, device: torch.device):
if device.type == "cpu":
return sample
if len(sample) == 0:
return {}
return _move_to_device(sample, device)
def input_transform_func(
tokenizer: PreTrainedTokenizerFast,
examples: Dict[str, List],
always_add_eos: bool,
max_length: int,
instruction: str,
) -> BatchEncoding:
if always_add_eos:
examples['input_texts'] = [instruction + input_example + tokenizer.eos_token for input_example in examples['input_texts']]
batch_dict = tokenizer(
examples['input_texts'],
max_length=max_length,
padding=True,
return_token_type_ids=False,
return_tensors="pt",
truncation=True)
return batch_dict
class PreNorm(torch.nn.Module):
def __init__(self, dim, fn, context_dim = None):
super().__init__()
self.fn = fn
self.norm = torch.nn.LayerNorm(dim)
self.norm_context = torch.nn.LayerNorm(context_dim) if exists(context_dim) else None
def forward(self, x, **kwargs):
x = self.norm(x)
if exists(self.norm_context):
context = kwargs['context']
normed_context = self.norm_context(context)
kwargs.update(context = normed_context)
return self.fn(x, **kwargs)
class GEGLU(torch.nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * torch.nn.functional.gelu(gates)
class FeedForward(torch.nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
self.net = torch.nn.Sequential(torch.nn.Linear(dim, dim * mult * 2),
GEGLU(),
torch.nn.Linear(dim * mult, dim))
def forward(self, x):
return self.net(x)
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
class Attention(torch.nn.Module):
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = torch.nn.Linear(query_dim, inner_dim, bias = False)
self.to_kv = torch.nn.Linear(context_dim, inner_dim * 2, bias = False)
self.to_out = torch.nn.Linear(inner_dim, query_dim, bias = False)
def forward(self, x, context = None, mask = None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_mem_efficient=True):
out = torch.nn.functional.scaled_dot_product_attention(q, k, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
return self.to_out(out)
class LatentAttentionModel(PreTrainedModel):
config_class = LatentAttentionConfig
def __init__(self, config: LatentAttentionConfig):
super().__init__(config)
## cross-attention block
num_latents, latent_dim, cross_heads, cross_dim_head = config.num_latents_value, config.latent_dim, config.num_cross_heads, config.cross_dim_head
dim = config.hidden_dim
# init latent_attention and latents
self.cross_attend_blocks = torch.nn.ModuleList([
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head),
context_dim = dim),
PreNorm(latent_dim, FeedForward(latent_dim)),
])
self.output_normalize = config.output_normalize
self.register_parameter("latents", torch.nn.Parameter(torch.randn(num_latents, latent_dim)))
def forward(self, hiddens, attention_mask: torch.Tensor=None):
## cross-attention block
cross_attn, cross_ff = self.cross_attend_blocks
b, *_, device = *hiddens.shape, hiddens.device
x = repeat(self.latents, 'n d -> b n d', b = b)
hiddens = cross_attn(hiddens, context = x, mask = None) + hiddens
hiddens = cross_ff(hiddens) + hiddens
if attention_mask !=None:
s = torch.sum(hiddens * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
hiddens = s / d
if self.output_normalize:
hiddens = torch.nn.functional.normalize(hiddens, p=2, dim=-1)
return hiddens
class NVEmbedModel(PreTrainedModel):
config_class = NVEmbedConfig
_no_split_modules = ["MistralDecoderLayer", "LatentAttentionModel"]
def __init__(self, config: NVEmbedConfig):
super().__init__(config)
self.latent_attention_model = AutoModel.from_config(config.latent_attention_config)
self.embedding_model = AutoModel.from_config(
config.text_config,
) if config.text_config is not None else None
self.tokenizer = AutoTokenizer.from_pretrained(config.text_config._name_or_path) if config.text_config is not None else None
self.padding_side = config.padding_side
self.is_mask_instruction = config.is_mask_instruction
self.add_eos = config.add_eos
self.mask_type = config.mask_type
if config.add_pad_token and self.tokenizer is not None:
self.add_pad_token()
def add_pad_token(self):
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = self.padding_side
def prepare_kwargs_from_batch(self, batch_dict: dict, instruction_lens: int, device: torch.device):
batch_dict = move_to_device(batch_dict, device)
attention_mask = batch_dict['attention_mask'].clone() if 'attention_mask' in batch_dict else None
if (attention_mask is not None and
self.padding_side == "right" and
self.is_mask_instruction == True and
instruction_lens > 0):
# Mask out the instruction tokens for mean-pooling
attention_mask[:, :instruction_lens] = 0
features: NVEmbedFeatures = {
'input_ids': torch.tensor(batch_dict.get('input_ids').to(batch_dict.get('input_ids')).long()),
'attention_mask': batch_dict['attention_mask'],
'pool_mask': attention_mask,
}
return features
@torch.no_grad()
def _do_encode(self,
prompts: List[str],
batch_size: int=1,
instruction: str="",
max_length: int=4096,
num_workers: int=32,
**kwargs
) -> Union[np.ndarray, torch.FloatTensor]:
dataset: Dataset = Dataset.from_dict({'input_texts': prompts})
dataset.set_transform(partial(input_transform_func,
self.tokenizer,
always_add_eos=True,
max_length=max_length,
instruction=instruction))
data_collator = DataCollatorWithPadding(self.tokenizer)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers,
collate_fn=data_collator,
pin_memory=True)
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
instruction_lens = len(self.tokenizer.tokenize(instruction))
else:
instruction_lens = 0
encoded_embeds = []
device = next(self.embedding_model.parameters()).device
for batch_dict in tqdm(data_loader, desc='encoding', mininterval=10):
features = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
embeds=self(**features)["sentence_embeddings"].squeeze(1)
encoded_embeds.append(embeds)
encoded_embeds = torch.cat(encoded_embeds, axis=0)
if "return_numpy" in kwargs and kwargs.get("return_numpy"):
encoded_embeds = encoded_embeds.cpu().detach().numpy()
return encoded_embeds
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, pool_mask: Optional[torch.Tensor]=None, return_dict: bool=True):
autocast_ctx = torch.autocast if torch.cuda.is_available() else nullcontext
with autocast_ctx("cuda"):
## decoder only layer
outputs = self.embedding_model(
input_ids=input_ids,
attention_mask=attention_mask,
)
## latent attention layer
embeds = self.latent_attention_model(
outputs.last_hidden_state,
pool_mask,
)
if not return_dict:
return (embeds,)
return {"sentence_embeddings": embeds}
@torch.no_grad()
def encode(self, prompts: List[str], instruction: str="", max_length: int=4096, **kwargs):
if self.padding_side == "right" and self.is_mask_instruction == True and len(instruction) > 0:
instruction_lens = len(self.tokenizer.tokenize(instruction))
else:
instruction_lens = 0
device = next(self.embedding_model.parameters()).device
batch_dict = input_transform_func(self.tokenizer,
{"input_texts": [prompt for prompt in prompts]},
always_add_eos=True,
max_length=max_length,
instruction=instruction)
features: NVEmbedFeatures = self.prepare_kwargs_from_batch(batch_dict, instruction_lens, device=device)
return self(**features)["sentence_embeddings"].squeeze(1)
## AutoModel Register
AutoModel.register(NVEmbedConfig, NVEmbedModel)
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
AutoModel.register(BidirectionalMistralConfig, BidirectionalMistralModel)
## Register for auto class
NVEmbedModel.register_for_auto_class("AutoModel")
LatentAttentionModel.register_for_auto_class("AutoModel")
BidirectionalMistralModel.register_for_auto_class("AutoModel")