File size: 10,656 Bytes
aa76dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/* coding=utf-8
 * Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>

namespace {

    /*
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);

template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }

template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }

template <>
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }

template <>
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }

template <>
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }

template <>
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }

int log2_ceil(int value) {
    int log2_value = 0;
    while ((1 << log2_value) < value) ++log2_value;
    return log2_value;
}

template<typename T>
struct Add {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a + b;
  }
};

template<typename T>
struct Max {
  __device__ __forceinline__ T operator()(T a, T b) const {
    return a < b ? b : a;
  }
};

template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
    return __shfl_xor_sync(mask, value, laneMask, width);
#else
    return __shfl_xor(value, laneMask, width);
#endif
}

template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
    ReduceOp<acc_t> r;
    #pragma unroll
    for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
        #pragma unroll
        for (int i = 0;  i < WARP_BATCH;  ++i) {
            acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
            sum[i] = r(sum[i], b);
        }
    }
}
*/

template <typename input_t, typename output_t, typename acc_t>
__global__ void anti_alias_activation_forward(
    output_t *dst,
    const input_t *src,
    const input_t *ftr,
    const input_t *alpha,
    const input_t *beta,
    int batch_size,
    int channels,
    int seq_len)
{
    // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
    constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
    constexpr int BUFFER_SIZE = 32;
    constexpr int FILTER_SIZE = 12;
    constexpr int HALF_FILTER_SIZE = 6;
    constexpr int REPLICATION_PAD = 5; // 5 on each side

    // blockDim/threadIdx = (128, 1, 1)
    // gridDim/blockIdx = (seq_blocks, channels, batches)
    int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
    int local_offset = threadIdx.x * BUFFER_SIZE;
    int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;


    //int intermediate_seq_len = seq_len * 2 - 1 + 4 * REPLICATION_PAD;
    //int intermediate_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
    //int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;

    int output_seq_len = seq_len * 2 ; //
    int output_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + output_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
    int output_local_offset = threadIdx.x * BUFFER_SIZE * 2;
    int output_seq_offset = blockIdx.x * 128 * BUFFER_SIZE *2 + output_local_offset;
    // get values needed for replication padding before moving pointer
    const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
    input_t seq_left_most_value = right_most_pntr[0];
    input_t seq_right_most_value = right_most_pntr[seq_len - 1];

    src += block_offset + local_offset;
    dst += output_block_offset + output_local_offset  ;
    alpha = alpha + blockIdx.y;
    input_t alpha_val = expf(alpha[0]);
    beta = beta + blockIdx.y;
    input_t beta_val = expf(beta[0]);
    // load data from global memory
    input_t elements[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
    input_t intermediates[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
    //output_t output[2*BUFFER_SIZE];
    input_t filter[FILTER_SIZE];
    //input_t temp_data[ELEMENTS_PER_LDG_STG];
    //uint8_t temp_mask[ELEMENTS_PER_LDG_STG];

    #pragma unroll
    for (int it = 0; it < FILTER_SIZE; it+=1) {
        filter[it] = ftr[it];
    }


    #pragma unroll
    for (int it = -HALF_FILTER_SIZE;  it < BUFFER_SIZE + HALF_FILTER_SIZE ;  it+=1) {
        int element_index = seq_offset + it;
	if ((element_index < 0) && (element_index >= -REPLICATION_PAD)) {
	    elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_left_most_value;
	}
	if ((element_index >= seq_len) && (element_index < seq_len + REPLICATION_PAD)) {
	    elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_right_most_value;
	}
        if ((element_index >= 0) && (element_index < seq_len)) {
	  elements[2*(HALF_FILTER_SIZE+it)] = 2*src[it];
        }
    }



    // apply filter
    #pragma unroll
    for (int it = 0;  it < (2 * BUFFER_SIZE + 2*FILTER_SIZE);  it+=1) {
        input_t acc = 0.0;

	int element_index = output_seq_offset + it; // index for output
	#pragma unroll
        for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
	  if ((element_index + f_idx) >= 0){
            acc += filter[f_idx] * elements[it+f_idx];
	  }
	}
        intermediates[it] = acc;
    }

    double no_div_by_zero = 0.000000001;
    #pragma unroll
    for (int it = 0; it < 12 + 2 * BUFFER_SIZE; it++) {
        intermediates[it] += (1.0/(beta_val + no_div_by_zero)) *  sinf(intermediates[it] * alpha_val) * sinf(intermediates[it] * alpha_val);
    }


    // now copy to output
    #pragma unroll
    for (int it = 0; it < 2*BUFFER_SIZE; it+=1){
      int element_index = output_seq_offset + it;
      if (element_index < output_seq_len) {
	dst[it]  = intermediates[it+6];
      }
    }



    // for (int it = 0;  it < BUFFER_SIZE;  it+=ELEMENTS_PER_LDG_STG) {
    //     int element_index = seq_offset + it;
    //     if (element_index < seq_len) {
    //         dst[it] = output[it];
    //     }
    // }


    // // Upsample convolution
    // for (int it = 0;  it < 2 * BUFFER_SIZE + 12;  it+=1) {
    //     input_t acc = 0.0;

    //     for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
    //         acc += filter[f_idx] * elements[it+f_idx];
    //     }
    //     intermediates[it] = acc;
    // }

    // // correct the corners of intermediates
    // if (seq_offset == 0) {
    //     for (int it = 0; it < 6; it+=1)
    //         intermediates[it] = 0;
    // }

    // if (seq_offset + 32 >= seq_len) {
    //     int offset = seq_len % 32 == 0 ? 32 : seq_len % 32;

    //     for (int it = 0; it < 6; it++) {
    //         intermediates[6+2*offset+it] = 0;
    //     }
    // }




    // for (int it = 0;  it < BUFFER_SIZE;  it+=ELEMENTS_PER_LDG_STG) {
    //     int element_index = seq_offset + it;
    //     if (element_index < seq_len) {
    //         dst[it] = output[it];
    //     }
    // }
}

template<typename input_t, typename output_t, typename acc_t>
void dispatch_anti_alias_activation_forward(
    output_t *dst,
    const input_t *src,
    const input_t *ftr,
    const input_t *alpha,
    const input_t *beta,
    int batch_size,
    int channels,
    int seq_len)
{
    if (seq_len == 0) {
        return;
    } else {
        // use 128 threads per block to maximimize gpu utilization
        constexpr int threads_per_block = 128;
        constexpr int seq_len_per_block = 4096;
        int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
        dim3 blocks(blocks_per_seq_len, channels, batch_size);
        dim3 threads(threads_per_block, 1, 1);

        anti_alias_activation_forward<input_t, output_t, acc_t>
	  <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, ftr, alpha, beta, batch_size, channels, seq_len);
    }
}
}

namespace anti_alias_activation {

  torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& filter, torch::Tensor const& alpha, torch::Tensor const& beta)
{
  // input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
  const int batches = input.size(0);
  const int channels = input.size(1);
  const int seq_len = input.size(2);

  // Output
  auto act_options = input.options().requires_grad(false);
  int output_seq_len = seq_len*2; // we'll be dilating between each element by interspersing with zeros

  torch::Tensor anti_alias_activation_results =
      torch::empty({batches, channels, output_seq_len}, act_options);

  // Softmax Intermediate Result Ptr
  void* input_ptr = static_cast<void*>(input.data_ptr());
  void* filter_ptr = static_cast<void*>(filter.data_ptr());
  void* alpha_ptr = static_cast<void*>(alpha.data_ptr());
  void* beta_ptr = static_cast<void*>(beta.data_ptr());
  void* anti_alias_activation_results_ptr = static_cast<void*>(anti_alias_activation_results.data_ptr());

  DISPATCH_FLOAT_HALF_AND_BFLOAT(
      input.scalar_type(),
      "dispatch anti alias activation_forward",
      dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
        reinterpret_cast<scalar_t*>(anti_alias_activation_results_ptr),
	    reinterpret_cast<const scalar_t*>(input_ptr),
        reinterpret_cast<const scalar_t*>(filter_ptr),
        reinterpret_cast<const scalar_t*>(alpha_ptr),
	reinterpret_cast<const scalar_t*>(beta_ptr),
	    batches,
        channels,
        seq_len);
      );
  return anti_alias_activation_results;
}
}