|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from alias_free_activation.torch.resample import UpSample1d, DownSample1d |
|
|
|
|
|
from alias_free_activation.cuda import load |
|
|
|
anti_alias_activation_cuda = load.load() |
|
|
|
|
|
class FusedAntiAliasActivation(torch.autograd.Function): |
|
""" |
|
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs. |
|
The hyperparameters are hard-coded in the kernel to maximize speed. |
|
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta): |
|
activation_results = anti_alias_activation_cuda.forward( |
|
inputs, up_ftr, down_ftr, alpha, beta |
|
) |
|
|
|
return activation_results |
|
|
|
@staticmethod |
|
def backward(ctx, output_grads): |
|
raise NotImplementedError |
|
return output_grads, None, None |
|
|
|
|
|
class Activation1d(nn.Module): |
|
def __init__( |
|
self, |
|
activation, |
|
up_ratio: int = 2, |
|
down_ratio: int = 2, |
|
up_kernel_size: int = 12, |
|
down_kernel_size: int = 12, |
|
fused: bool = True, |
|
): |
|
super().__init__() |
|
self.up_ratio = up_ratio |
|
self.down_ratio = down_ratio |
|
self.act = activation |
|
self.upsample = UpSample1d(up_ratio, up_kernel_size) |
|
self.downsample = DownSample1d(down_ratio, down_kernel_size) |
|
|
|
self.fused = fused |
|
|
|
def forward(self, x): |
|
if not self.fused: |
|
x = self.upsample(x) |
|
x = self.act(x) |
|
x = self.downsample(x) |
|
return x |
|
else: |
|
if self.act.__class__.__name__ == "Snake": |
|
beta = self.act.alpha.data |
|
else: |
|
beta = ( |
|
self.act.beta.data |
|
) |
|
alpha = self.act.alpha.data |
|
if ( |
|
not self.act.alpha_logscale |
|
): |
|
alpha = torch.log(alpha) |
|
beta = torch.log(beta) |
|
|
|
x = FusedAntiAliasActivation.apply( |
|
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta |
|
) |
|
return x |
|
|