File size: 5,308 Bytes
a19ba92
fa229c5
 
 
2ff0cf6
a19ba92
b4e372c
a19ba92
2ff0cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e372c
 
 
 
2ff0cf6
b4e372c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff0cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
license: apache-2.0
---
# nvidia/domain-classifier

# Model Overview
This is a text classification model to classify documents into one of 26 domain classes:

'Adult', 'Arts_and_Entertainment', 'Autos_and_Vehicles', 'Beauty_and_Fitness', 'Books_and_Literature', 'Business_and_Industrial', 'Computers_and_Electronics', 'Finance', 'Food_and_Drink', 'Games', 'Health', 'Hobbies_and_Leisure', 'Home_and_Garden', 'Internet_and_Telecom', 'Jobs_and_Education', 'Law_and_Government', 'News', 'Online_Communities', 'People_and_Society', 'Pets_and_Animals', 'Real_Estate', 'Science', 'Sensitive_Subjects', 'Shopping', 'Sports', 'Travel_and_Transportation'
# Model Architecture
The model architecture is Deberta V3 Base
Context length is 512 tokens
# Training (details)
## Training data:
- 1 million Common Crawl samples, labeled using Google Cloud’s Natural Language API: https://cloud.google.com/natural-language/docs/classifying-text
- 500k Wikepedia articles, curated using Wikipedia-API: https://pypi.org/project/Wikipedia-API/
## Training steps:
Model was trained in multiple rounds using Wikipedia and Common Crawl data, labeled by a combination of pseudo labels and Google Cloud API.
# How To Use This Model
## Input
The model takes one or several paragraphs of text as input.
Example input:
```
q Directions
1. Mix 2 flours and baking powder together
2. Mix water and egg in a separate bowl. Add dry to wet little by little
3. Heat frying pan on medium
4. Pour batter into pan and then put blueberries on top before flipping
5. Top with desired toppings!
```
## Output
The model outputs one of the 26 domain classes as the predicted domain for each input sample.
Example output:
```
Food_and_Drink
```

# How to use in NeMo Curator

The inference code is available on NeMo Curator's GitHub repository. Download the [model.pth](https://huggingface.co/nvidia/domain-classifier/blob/main/model.pth) file and check out this [example notebook](https://github.com/NVIDIA/NeMo-Curator/blob/main/tutorials/distributed_data_classification/distributed_data_classification.ipynb) to get started.

# How to use in transformers
To use the Domain classifier, use the following code:

```python

import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from huggingface_hub import PyTorchModelHubMixin

class CustomModel(nn.Module, PyTorchModelHubMixin):
    def __init__(self, config):
        super(CustomModel, self).__init__()
        self.model = AutoModel.from_pretrained(config['base_model'])
        self.dropout = nn.Dropout(config['fc_dropout'])
        self.fc = nn.Linear(self.model.config.hidden_size, len(config['id2label']))

    def forward(self, input_ids, attention_mask):
        features = self.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        dropped = self.dropout(features)
        outputs = self.fc(dropped)
        return torch.softmax(outputs[:, 0, :], dim=1)

# Setup configuration and model
config = AutoConfig.from_pretrained("nvidia/domain-classifier")
tokenizer = AutoTokenizer.from_pretrained("nvidia/domain-classifier")
model = CustomModel.from_pretrained("nvidia/domain-classifier")

# Prepare and process inputs
text_samples = ["Sports is a popular domain", "Politics is a popular domain"]
inputs = tokenizer(text_samples, return_tensors="pt", padding="longest", truncation=True)
outputs = model(inputs['input_ids'], inputs['attention_mask'])

# Predict and display results
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()]
print(predicted_domains)
# ['Sports', 'News']
```

# Evaluation Benchmarks

Evaluation Metric: PR-AUC
PR-AUC score on evaluation set with 105k samples - 0.9873 
PR-AUC score for each domain:
| Domain                   | PR-AUC |
|--------------------------|--------|
| Adult                    | 0.999  |
| Arts_and_Entertainment   | 0.997  |
| Autos_and_Vehicles       | 0.997  |
| Beauty_and_Fitness       | 0.997  |
| Books_and_Literature     | 0.995  |
| Business_and_Industrial  | 0.982  |
| Computers_and_Electronics| 0.992  |
| Finance                  | 0.989  |
| Food_and_Drink           | 0.998  |
| Games                    | 0.997  |
| Health                   | 0.997  |
| Hobbies_and_Leisure      | 0.984  |
| Home_and_Garden          | 0.997  |
| Internet_and_Telecom     | 0.982  |
| Jobs_and_Education       | 0.993  |
| Law_and_Government       | 0.967  |
| News                     | 0.918  |
| Online_Communities       | 0.983  |
| People_and_Society       | 0.975  |
| Pets_and_Animals         | 0.997  |
| Real_Estate              | 0.997  |
| Science                  | 0.988  |
| Sensitive_Subjects       | 0.982  |
| Shopping                 | 0.995  |
| Sports                   | 0.995  |
| Travel_and_Transportation| 0.996  |
| Mean                     | 0.9873 |

# References
https://arxiv.org/abs/2111.09543
https://github.com/microsoft/DeBERTa
# License
License to use this model is covered by the Apache 2.0. By downloading the public and release version of the model, you accept the terms and conditions of the Apache License 2.0.
This repository contains the code for the domain classifier model.