File size: 3,092 Bytes
c78b34e
 
 
 
 
 
 
 
90fc489
3c366b6
c78b34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- vision
- image-segmentation
datasets:
- cityscapes
widget:
- src: https://www.researchgate.net/profile/Anurag-Arnab/publication/315881952/figure/fig5/AS:667673876779033@1536197265755/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.jpg
  example_title: Road
---

# SegFormer (b1-sized) model fine-tuned on CityScapes

SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). 

Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.

## Model description

SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.

## Intended uses & limitations

You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.

### How to use

Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:

```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests

feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)
```

For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).

### BibTeX entry and citation info

```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
  author    = {Enze Xie and
               Wenhai Wang and
               Zhiding Yu and
               Anima Anandkumar and
               Jose M. Alvarez and
               Ping Luo},
  title     = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
               Transformers},
  journal   = {CoRR},
  volume    = {abs/2105.15203},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.15203},
  eprinttype = {arXiv},
  eprint    = {2105.15203},
  timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```