File size: 3,023 Bytes
7ea4789 92fc183 7ea4789 ee64a3c 7ea4789 ee64a3c 7ea4789 92fc183 7ea4789 92fc183 7ea4789 92fc183 7ea4789 92fc183 7ea4789 92fc183 7ea4789 92fc183 7ea4789 ee64a3c 7ea4789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: opus_books_es_pt
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: es-pt
split: train
args: es-pt
metrics:
- name: Bleu
type: bleu
value: 1.2169
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus_books_es_pt
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0763
- Bleu: 1.2169
- Gen Len: 18.5038
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 133 | 2.5227 | 0.5795 | 18.5789 |
| No log | 2.0 | 266 | 2.3918 | 0.6703 | 18.5451 |
| No log | 3.0 | 399 | 2.3166 | 0.8471 | 18.5301 |
| 2.6664 | 4.0 | 532 | 2.2665 | 0.8914 | 18.4737 |
| 2.6664 | 5.0 | 665 | 2.2319 | 0.928 | 18.4549 |
| 2.6664 | 6.0 | 798 | 2.2025 | 1.0067 | 18.5113 |
| 2.6664 | 7.0 | 931 | 2.1784 | 1.0162 | 18.515 |
| 2.2503 | 8.0 | 1064 | 2.1580 | 1.1102 | 18.5113 |
| 2.2503 | 9.0 | 1197 | 2.1420 | 1.0638 | 18.515 |
| 2.2503 | 10.0 | 1330 | 2.1257 | 1.1149 | 18.5113 |
| 2.2503 | 11.0 | 1463 | 2.1142 | 1.1334 | 18.4474 |
| 2.1172 | 12.0 | 1596 | 2.1091 | 1.1308 | 18.4925 |
| 2.1172 | 13.0 | 1729 | 2.0980 | 1.1655 | 18.5075 |
| 2.1172 | 14.0 | 1862 | 2.0950 | 1.1464 | 18.4925 |
| 2.1172 | 15.0 | 1995 | 2.0890 | 1.1383 | 18.5038 |
| 2.0185 | 16.0 | 2128 | 2.0833 | 1.1671 | 18.5 |
| 2.0185 | 17.0 | 2261 | 2.0806 | 1.1555 | 18.5038 |
| 2.0185 | 18.0 | 2394 | 2.0777 | 1.15 | 18.5113 |
| 1.9882 | 19.0 | 2527 | 2.0770 | 1.2252 | 18.5113 |
| 1.9882 | 20.0 | 2660 | 2.0763 | 1.2169 | 18.5038 |
### Framework versions
- Transformers 4.36.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|