File size: 1,955 Bytes
4e0cf09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-v3-large-271-ver1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large-271-ver1
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1014
- Precision: 0.9702
- Recall: 0.9702
- F1: 0.9702
- Accuracy: 0.9702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2626 | 1.0 | 896 | 0.1186 | 0.9561 | 0.9561 | 0.9561 | 0.9561 |
| 0.0699 | 2.0 | 1792 | 0.1014 | 0.9702 | 0.9702 | 0.9702 | 0.9702 |
| 0.0352 | 3.0 | 2688 | 0.1217 | 0.9680 | 0.9680 | 0.9680 | 0.9680 |
| 0.0115 | 4.0 | 3584 | 0.1857 | 0.9672 | 0.9672 | 0.9672 | 0.9672 |
| 0.0083 | 5.0 | 4480 | 0.2098 | 0.9680 | 0.9680 | 0.9680 | 0.9680 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|