octava commited on
Commit
40717f5
1 Parent(s): 5c213c0

End of training

Browse files
Files changed (1) hide show
  1. README.md +13 -16
README.md CHANGED
@@ -4,7 +4,7 @@ base_model: google/vit-base-patch16-224-in21k
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
- - food101
8
  metrics:
9
  - accuracy
10
  model-index:
@@ -14,15 +14,15 @@ model-index:
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
- name: food101
18
- type: food101
19
  config: default
20
- split: train[:5000]
21
  args: default
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.884
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # image_classification
32
 
33
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.6322
36
- - Accuracy: 0.884
37
 
38
  ## Model description
39
 
@@ -56,25 +56,22 @@ The following hyperparameters were used during training:
56
  - train_batch_size: 16
57
  - eval_batch_size: 16
58
  - seed: 42
59
- - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 64
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.1
64
  - num_epochs: 3
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 2.722 | 0.99 | 62 | 2.5374 | 0.822 |
71
- | 1.8121 | 2.0 | 125 | 1.8029 | 0.854 |
72
- | 1.6025 | 2.98 | 186 | 1.6395 | 0.881 |
73
 
74
 
75
  ### Framework versions
76
 
77
- - Transformers 4.33.1
78
- - Pytorch 2.0.1+cu118
79
  - Datasets 2.14.5
80
  - Tokenizers 0.13.3
 
4
  tags:
5
  - generated_from_trainer
6
  datasets:
7
+ - imagefolder
8
  metrics:
9
  - accuracy
10
  model-index:
 
14
  name: Image Classification
15
  type: image-classification
16
  dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
  config: default
20
+ split: train
21
  args: default
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.36875
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # image_classification
32
 
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.6432
36
+ - Accuracy: 0.3688
37
 
38
  ## Model description
39
 
 
56
  - train_batch_size: 16
57
  - eval_batch_size: 16
58
  - seed: 42
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
 
61
  - num_epochs: 3
62
 
63
  ### Training results
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | No log | 1.0 | 40 | 1.8982 | 0.3 |
68
+ | No log | 2.0 | 80 | 1.6882 | 0.3438 |
69
+ | No log | 3.0 | 120 | 1.6481 | 0.3812 |
70
 
71
 
72
  ### Framework versions
73
 
74
+ - Transformers 4.33.2
75
+ - Pytorch 2.2.0.dev20230906
76
  - Datasets 2.14.5
77
  - Tokenizers 0.13.3