End of training
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ base_model: google/vit-base-patch16-224-in21k
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
-
-
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
@@ -14,15 +14,15 @@ model-index:
|
|
14 |
name: Image Classification
|
15 |
type: image-classification
|
16 |
dataset:
|
17 |
-
name:
|
18 |
-
type:
|
19 |
config: default
|
20 |
-
split: train
|
21 |
args: default
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
# image_classification
|
32 |
|
33 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,25 +56,22 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps: 4
|
60 |
-
- total_train_batch_size: 64
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
-
- lr_scheduler_warmup_ratio: 0.1
|
64 |
- num_epochs: 3
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
-
- Transformers 4.33.
|
78 |
-
- Pytorch 2.0.
|
79 |
- Datasets 2.14.5
|
80 |
- Tokenizers 0.13.3
|
|
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
+
- imagefolder
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
|
|
14 |
name: Image Classification
|
15 |
type: image-classification
|
16 |
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
config: default
|
20 |
+
split: train
|
21 |
args: default
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.36875
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# image_classification
|
32 |
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.6432
|
36 |
+
- Accuracy: 0.3688
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 16
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
|
|
61 |
- num_epochs: 3
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| No log | 1.0 | 40 | 1.8982 | 0.3 |
|
68 |
+
| No log | 2.0 | 80 | 1.6882 | 0.3438 |
|
69 |
+
| No log | 3.0 | 120 | 1.6481 | 0.3812 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
73 |
|
74 |
+
- Transformers 4.33.2
|
75 |
+
- Pytorch 2.2.0.dev20230906
|
76 |
- Datasets 2.14.5
|
77 |
- Tokenizers 0.13.3
|