File size: 1,731 Bytes
e7cd2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: ai4bharat/IndicBART
tags:
- summarization
- generated_from_trainer
model-index:
- name: IndicBART_new_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IndicBART_new_2

This model is a fine-tuned version of [ai4bharat/IndicBART](https://huggingface.co/ai4bharat/IndicBART) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3218

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.96  | 11   | 5.4424          |
| No log        | 2.0   | 23   | 4.3784          |
| No log        | 2.96  | 34   | 4.0395          |
| No log        | 4.0   | 46   | 3.7066          |
| No log        | 4.96  | 57   | 3.5332          |
| No log        | 6.0   | 69   | 3.4435          |
| No log        | 6.96  | 80   | 3.3687          |
| No log        | 7.65  | 88   | 3.3218          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.2