Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft import PeftModel, PeftConfig
|
2 |
+
from transformers import AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
BASE_MODEL_NAME = "tiiuae/falcon-7b"
|
8 |
+
MODEL_NAME = "ohtaman/falcon-7b-kokkai2022-lora"
|
9 |
+
|
10 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(BASE_MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
12 |
+
model = PeftModel.from_pretrained(base_model, MODEL_NAME)
|
13 |
+
|
14 |
+
|
15 |
+
def generate_prompt(question: str, questioner: str="", answerer: str=""):
|
16 |
+
return f"""# question
|
17 |
+
{questioner}
|
18 |
+
|
19 |
+
{question}
|
20 |
+
|
21 |
+
# answer
|
22 |
+
{answerer}
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
def evaluate(
|
27 |
+
quetion: str,
|
28 |
+
questioner: str="",
|
29 |
+
answerer: str="",
|
30 |
+
temperature: float=0.1,
|
31 |
+
top_p: float=0.75,
|
32 |
+
top_k: int=40,
|
33 |
+
num_beams: int=4,
|
34 |
+
repetition_penalty: float=1.05,
|
35 |
+
outputs.sequences[0, input_length:-1]_tokens: int=256,
|
36 |
+
**kwargs
|
37 |
+
):
|
38 |
+
prompt = generate_prompt(question, questioner, answerer)
|
39 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
40 |
+
input_ids = inputs["input_ids"].to(model.device)
|
41 |
+
n_input_tokens = input_ids.shape[1]
|
42 |
+
|
43 |
+
generation_config = GenerationConfig(
|
44 |
+
temperature=temperature,
|
45 |
+
top_p=top_p,
|
46 |
+
top_k=top_k,
|
47 |
+
num_beams=num_beams,
|
48 |
+
repetition_penalty=repetition_penalty,
|
49 |
+
**kwargs,
|
50 |
+
)
|
51 |
+
with torch.no_grad():
|
52 |
+
generation_output = model.generate(
|
53 |
+
input_ids=input_ids,
|
54 |
+
generation_config=generation_config,
|
55 |
+
return_dict_in_generate=True,
|
56 |
+
output_scores=True,
|
57 |
+
max_new_tokens=max_new_tokens,
|
58 |
+
)
|
59 |
+
s = generation_output.sequences[0, n_input_tokens:-1]
|
60 |
+
return tokenizer.decode(s)
|
61 |
+
|
62 |
+
|
63 |
+
g = gr.Interface(
|
64 |
+
fn=evaluate,
|
65 |
+
inputs=[
|
66 |
+
gr.components.Textbox(lines=5, label="Question", placeholder="Question"),
|
67 |
+
gr.components.Textbox(lines=1, label="Questioner", placeholder="Questioner"),
|
68 |
+
gr.components.Textbox(lines=1, label="Answerer", placeholder="Answerer"),
|
69 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
70 |
+
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
71 |
+
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
72 |
+
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
73 |
+
gr.components.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty"),
|
74 |
+
gr.components.Slider(minimum=1, maximum=512, step=1, value=128, label="Max tokens"),
|
75 |
+
],
|
76 |
+
outputs=[
|
77 |
+
gr.inputs.Textbox(
|
78 |
+
lines=5,
|
79 |
+
label="Output",
|
80 |
+
)
|
81 |
+
],
|
82 |
+
title="🏛️: Kokkai 2022",
|
83 |
+
description="falcon-7b-kokkai2022 is a 7B-parameter model trained on Japan's 2022 Diet proceedings using LoRA based on [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b).",
|
84 |
+
)
|
85 |
+
g.queue(concurrency_count=1)
|
86 |
+
g.launch()
|