from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM import torch import gradio as gr BASE_MODEL_NAME = "tiiuae/falcon-7b" MODEL_NAME = "ohtaman/falcon-7b-kokkai2022-lora" tokenizer = transformers.AutoTokenizer.from_pretrained(BASE_MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True) base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) model = PeftModel.from_pretrained(base_model, MODEL_NAME) def generate_prompt(question: str, questioner: str="", answerer: str=""): return f"""# question {questioner} {question} # answer {answerer} """ def evaluate( quetion: str, questioner: str="", answerer: str="", temperature: float=0.1, top_p: float=0.75, top_k: int=40, num_beams: int=4, repetition_penalty: float=1.05, outputs.sequences[0, input_length:-1]_tokens: int=256, **kwargs ): prompt = generate_prompt(question, questioner, answerer) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(model.device) n_input_tokens = input_ids.shape[1] generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, repetition_penalty=repetition_penalty, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0, n_input_tokens:-1] return tokenizer.decode(s) g = gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox(lines=5, label="Question", placeholder="Question"), gr.components.Textbox(lines=1, label="Questioner", placeholder="Questioner"), gr.components.Textbox(lines=1, label="Answerer", placeholder="Answerer"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty"), gr.components.Slider(minimum=1, maximum=512, step=1, value=128, label="Max tokens"), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="🏛️: Kokkai 2022", description="falcon-7b-kokkai2022 is a 7B-parameter model trained on Japan's 2022 Diet proceedings using LoRA based on [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b).", ) g.queue(concurrency_count=1) g.launch()