File size: 2,658 Bytes
ae55c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- yo
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small Naija
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Naija

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5037
- Wer: 46.0115

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.3494        | 0.1022 | 250  | 1.4026          | 80.6179 |
| 0.962         | 0.2045 | 500  | 1.0016          | 68.3649 |
| 0.751         | 0.3067 | 750  | 0.8457          | 58.7227 |
| 0.6622        | 0.4090 | 1000 | 0.7606          | 56.7281 |
| 0.601         | 0.5112 | 1250 | 0.7057          | 55.7731 |
| 0.6004        | 0.6135 | 1500 | 0.6700          | 51.7955 |
| 0.5235        | 0.7157 | 1750 | 0.6341          | 53.2861 |
| 0.4939        | 0.8180 | 2000 | 0.6102          | 53.3002 |
| 0.4897        | 0.9202 | 2250 | 0.5913          | 52.4227 |
| 0.3799        | 1.0225 | 2500 | 0.5749          | 50.2787 |
| 0.3693        | 1.1247 | 2750 | 0.5623          | 48.4396 |
| 0.3498        | 1.2270 | 3000 | 0.5506          | 48.1969 |
| 0.3438        | 1.3292 | 3250 | 0.5425          | 48.5770 |
| 0.3498        | 1.4315 | 3500 | 0.5342          | 46.8116 |
| 0.3126        | 1.5337 | 3750 | 0.5248          | 46.8427 |
| 0.3215        | 1.6360 | 4000 | 0.5172          | 46.2891 |
| 0.3318        | 1.7382 | 4250 | 0.5126          | 47.7971 |
| 0.3108        | 1.8405 | 4500 | 0.5080          | 46.3594 |
| 0.3499        | 1.9427 | 4750 | 0.5049          | 46.7832 |
| 0.2664        | 2.0450 | 5000 | 0.5037          | 46.0115 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.0.1+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1