from typing import Optional, Tuple, Union import torch from torch.nn import BCEWithLogitsLoss from transformers import PreTrainedModel, PreTrainedTokenizer from transformers.modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast class MeasurementPredictorMixin(PreTrainedModel): def __init__(self, config): super().__init__(config) self.sensor_token = config.sensor_token self.sensor_token_id = config.sensor_token_id self.n_sensors = config.n_sensors self.sensor_probes = torch.nn.ModuleList([ torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors) ]) self.use_aggregated = config.use_aggregated if config.use_aggregated: self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1) self.sensors_weight = config.sensors_weight self.aggregate_weight = config.aggregate_weight def check_tokenizer(self, tokenizer: PreTrainedTokenizer): sensor_token_id = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(self.sensor_token))[0] assert sensor_token_id == self.sensor_token_id def set_sensor_token(self, sensor_token: str, tokenizer: PreTrainedTokenizer): sensor_token_id = tokenizer.tokenize(sensor_token)[0] self.sensor_token = sensor_token self.sensor_token_id = sensor_token_id def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict base_model_output: BaseModelOutputWithPast = self.base_model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) tensor_token_mask = torch.where(input_ids == self.sensor_token_id)[1] sensor_embs = base_model_output.last_hidden_state[:, tensor_token_mask, :] sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :]) for i in range(self.n_sensors)], dim=-1) logits = sensor_logits if self.use_aggregated: last_emb = base_model_output.last_hidden_state[:, -1, :] aggregate_logits = self.aggregate_probe(last_emb) logits = torch.concat([logits, aggregate_logits], dim=-1) loss = None if labels is not None: loss_fct = BCEWithLogitsLoss() sensor_loss = loss_fct(sensor_logits, labels[:, :self.n_sensors]) * self.sensors_weight loss = sensor_loss if self.use_aggregated: #TOOD: should be use aggregate aggregate_loss = loss_fct(aggregate_logits, labels[:, -1:]) * self.aggregate_weight loss += aggregate_loss if not return_dict: output = (logits, ) + base_model_output[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=logits, past_key_values=base_model_output.past_key_values, hidden_states=base_model_output.hidden_states, attentions=base_model_output.attentions, )