oliverguhr
commited on
Commit
•
d347a22
1
Parent(s):
370b45c
added new flan model
Browse files
README.md
CHANGED
@@ -3,31 +3,215 @@ license: apache-2.0
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
-
- name:
|
7 |
results: []
|
8 |
-
widget:
|
9 |
-
- text: "das idst ein neuZr test"
|
10 |
-
example_title: "1"
|
11 |
---
|
12 |
|
13 |
-
This
|
14 |
-
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
19 |
-
|
20 |
|
21 |
## Intended uses & limitations
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correction-german-base")
|
30 |
|
31 |
-
|
32 |
-
```
|
33 |
|
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
+
- name: flan-t5-spelling-de-base-fullds2
|
7 |
results: []
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
# flan-t5-spelling-de-base-fullds2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0525
|
18 |
+
- Cer: 0.0077
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
More information needed
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.003
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 16
|
42 |
+
- total_train_batch_size: 256
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 2.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 0.444 | 0.01 | 500 | 0.3389 | 0.6733 |
|
52 |
+
| 0.3429 | 0.03 | 1000 | 0.2655 | 0.6706 |
|
53 |
+
| 0.2914 | 0.04 | 1500 | 0.2277 | 0.6705 |
|
54 |
+
| 0.264 | 0.05 | 2000 | 0.2078 | 0.6698 |
|
55 |
+
| 0.2506 | 0.06 | 2500 | 0.1894 | 0.6694 |
|
56 |
+
| 0.2305 | 0.08 | 3000 | 0.1787 | 0.6685 |
|
57 |
+
| 0.2206 | 0.09 | 3500 | 0.1685 | 0.6688 |
|
58 |
+
| 0.2086 | 0.1 | 4000 | 0.1607 | 0.6685 |
|
59 |
+
| 0.1955 | 0.11 | 4500 | 0.1518 | 0.6683 |
|
60 |
+
| 0.1903 | 0.13 | 5000 | 0.1475 | 0.6686 |
|
61 |
+
| 0.1827 | 0.14 | 5500 | 0.1430 | 0.6684 |
|
62 |
+
| 0.1775 | 0.15 | 6000 | 0.1369 | 0.6681 |
|
63 |
+
| 0.1748 | 0.16 | 6500 | 0.1359 | 0.6681 |
|
64 |
+
| 0.1725 | 0.18 | 7000 | 0.1312 | 0.6677 |
|
65 |
+
| 0.1638 | 0.19 | 7500 | 0.1254 | 0.6674 |
|
66 |
+
| 0.1575 | 0.2 | 8000 | 0.1255 | 0.6680 |
|
67 |
+
| 0.1537 | 0.21 | 8500 | 0.1204 | 0.6678 |
|
68 |
+
| 0.1516 | 0.23 | 9000 | 0.1188 | 0.6671 |
|
69 |
+
| 0.1526 | 0.24 | 9500 | 0.1150 | 0.6673 |
|
70 |
+
| 0.148 | 0.25 | 10000 | 0.1131 | 0.6676 |
|
71 |
+
| 0.1445 | 0.26 | 10500 | 0.1107 | 0.6675 |
|
72 |
+
| 0.1378 | 0.28 | 11000 | 0.1113 | 0.6664 |
|
73 |
+
| 6.1099 | 0.29 | 11500 | 6.0484 | 0.8805 |
|
74 |
+
| 4.9528 | 0.3 | 12000 | 4.6614 | 0.8115 |
|
75 |
+
| 0.2066 | 0.31 | 12500 | 0.1495 | 0.6679 |
|
76 |
+
| 0.1654 | 0.33 | 13000 | 0.1228 | 0.6678 |
|
77 |
+
| 0.1552 | 0.34 | 13500 | 0.1153 | 0.6670 |
|
78 |
+
| 0.1443 | 0.35 | 14000 | 0.1110 | 0.6670 |
|
79 |
+
| 0.1397 | 0.36 | 14500 | 0.1073 | 0.6670 |
|
80 |
+
| 0.1366 | 0.38 | 15000 | 0.1067 | 0.6664 |
|
81 |
+
| 0.1362 | 0.39 | 15500 | 0.1043 | 0.6669 |
|
82 |
+
| 0.1375 | 0.4 | 16000 | 0.1012 | 0.6668 |
|
83 |
+
| 0.1325 | 0.41 | 16500 | 0.0996 | 0.6672 |
|
84 |
+
| 0.1277 | 0.43 | 17000 | 0.0993 | 0.6664 |
|
85 |
+
| 0.1261 | 0.44 | 17500 | 0.0977 | 0.6667 |
|
86 |
+
| 0.1274 | 0.45 | 18000 | 0.0978 | 0.6666 |
|
87 |
+
| 0.127 | 0.46 | 18500 | 0.0952 | 0.6670 |
|
88 |
+
| 0.1218 | 0.48 | 19000 | 0.0933 | 0.6666 |
|
89 |
+
| 0.1196 | 0.49 | 19500 | 0.0923 | 0.6670 |
|
90 |
+
| 0.1192 | 0.5 | 20000 | 0.0920 | 0.6665 |
|
91 |
+
| 0.1171 | 0.52 | 20500 | 0.0910 | 0.6664 |
|
92 |
+
| 0.1153 | 0.53 | 21000 | 0.0906 | 0.6667 |
|
93 |
+
| 0.1102 | 0.54 | 21500 | 0.0890 | 0.6669 |
|
94 |
+
| 0.1147 | 0.55 | 22000 | 0.0886 | 0.6667 |
|
95 |
+
| 0.1144 | 0.57 | 22500 | 0.0868 | 0.6664 |
|
96 |
+
| 0.1132 | 0.58 | 23000 | 0.0858 | 0.6666 |
|
97 |
+
| 0.1073 | 0.59 | 23500 | 0.0853 | 0.6667 |
|
98 |
+
| 0.109 | 0.6 | 24000 | 0.0845 | 0.6663 |
|
99 |
+
| 0.1073 | 0.62 | 24500 | 0.0842 | 0.6662 |
|
100 |
+
| 0.1062 | 0.63 | 25000 | 0.0831 | 0.6662 |
|
101 |
+
| 0.1018 | 0.64 | 25500 | 0.0830 | 0.6662 |
|
102 |
+
| 0.1052 | 0.65 | 26000 | 0.0818 | 0.6666 |
|
103 |
+
| 0.1072 | 0.67 | 26500 | 0.0811 | 0.6662 |
|
104 |
+
| 0.1023 | 0.68 | 27000 | 0.0807 | 0.6661 |
|
105 |
+
| 0.1013 | 0.69 | 27500 | 0.0801 | 0.6664 |
|
106 |
+
| 0.0986 | 0.7 | 28000 | 0.0797 | 0.6664 |
|
107 |
+
| 0.1022 | 0.72 | 28500 | 0.0786 | 0.6662 |
|
108 |
+
| 0.0984 | 0.73 | 29000 | 0.0781 | 0.6659 |
|
109 |
+
| 0.0971 | 0.74 | 29500 | 0.0778 | 0.6662 |
|
110 |
+
| 0.0963 | 0.75 | 30000 | 0.0773 | 0.6660 |
|
111 |
+
| 0.0958 | 0.77 | 30500 | 0.0760 | 0.6662 |
|
112 |
+
| 0.0999 | 0.78 | 31000 | 0.0760 | 0.6661 |
|
113 |
+
| 0.0953 | 0.79 | 31500 | 0.0752 | 0.6661 |
|
114 |
+
| 0.095 | 0.8 | 32000 | 0.0749 | 0.6662 |
|
115 |
+
| 0.09 | 0.82 | 32500 | 0.0748 | 0.6663 |
|
116 |
+
| 0.0927 | 0.83 | 33000 | 0.0740 | 0.6656 |
|
117 |
+
| 0.0914 | 0.84 | 33500 | 0.0739 | 0.6662 |
|
118 |
+
| 0.0889 | 0.85 | 34000 | 0.0737 | 0.6659 |
|
119 |
+
| 0.0924 | 0.87 | 34500 | 0.0726 | 0.6660 |
|
120 |
+
| 0.0898 | 0.88 | 35000 | 0.0719 | 0.6659 |
|
121 |
+
| 0.0913 | 0.89 | 35500 | 0.0721 | 0.6657 |
|
122 |
+
| 0.0897 | 0.9 | 36000 | 0.0715 | 0.6657 |
|
123 |
+
| 0.0887 | 0.92 | 36500 | 0.0708 | 0.6659 |
|
124 |
+
| 0.0922 | 0.93 | 37000 | 0.0712 | 0.6653 |
|
125 |
+
| 0.0905 | 0.94 | 37500 | 0.0707 | 0.6660 |
|
126 |
+
| 0.0881 | 0.95 | 38000 | 0.0700 | 0.6658 |
|
127 |
+
| 0.0858 | 0.97 | 38500 | 0.0693 | 0.6658 |
|
128 |
+
| 0.0882 | 0.98 | 39000 | 0.0690 | 0.6657 |
|
129 |
+
| 0.0858 | 0.99 | 39500 | 0.0688 | 0.6656 |
|
130 |
+
| 0.0808 | 1.0 | 40000 | 0.0680 | 0.6658 |
|
131 |
+
| 0.0783 | 1.02 | 40500 | 0.0680 | 0.6657 |
|
132 |
+
| 0.0822 | 1.03 | 41000 | 0.0676 | 0.6658 |
|
133 |
+
| 0.077 | 1.04 | 41500 | 0.0675 | 0.6657 |
|
134 |
+
| 0.0788 | 1.06 | 42000 | 0.0673 | 0.6655 |
|
135 |
+
| 0.0754 | 1.07 | 42500 | 0.0667 | 0.6660 |
|
136 |
+
| 0.0762 | 1.08 | 43000 | 0.0669 | 0.6656 |
|
137 |
+
| 0.075 | 1.09 | 43500 | 0.0660 | 0.6660 |
|
138 |
+
| 0.0816 | 1.11 | 44000 | 0.0661 | 0.6657 |
|
139 |
+
| 0.0758 | 1.12 | 44500 | 0.0659 | 0.6657 |
|
140 |
+
| 0.0767 | 1.13 | 45000 | 0.0653 | 0.6658 |
|
141 |
+
| 0.076 | 1.14 | 45500 | 0.0649 | 0.6656 |
|
142 |
+
| 0.0727 | 1.16 | 46000 | 0.0651 | 0.6656 |
|
143 |
+
| 0.0768 | 1.17 | 46500 | 0.0641 | 0.6656 |
|
144 |
+
| 0.0722 | 1.18 | 47000 | 0.0640 | 0.6655 |
|
145 |
+
| 0.0763 | 1.19 | 47500 | 0.0646 | 0.6654 |
|
146 |
+
| 0.0766 | 1.21 | 48000 | 0.0636 | 0.6658 |
|
147 |
+
| 0.0774 | 1.22 | 48500 | 0.0636 | 0.6654 |
|
148 |
+
| 0.0759 | 1.23 | 49000 | 0.0633 | 0.6654 |
|
149 |
+
| 0.0779 | 1.24 | 49500 | 0.0625 | 0.6658 |
|
150 |
+
| 0.074 | 1.26 | 50000 | 0.0628 | 0.6654 |
|
151 |
+
| 0.0761 | 1.27 | 50500 | 0.0623 | 0.6656 |
|
152 |
+
| 0.0763 | 1.28 | 51000 | 0.0617 | 0.6655 |
|
153 |
+
| 0.072 | 1.29 | 51500 | 0.0617 | 0.6656 |
|
154 |
+
| 0.0718 | 1.31 | 52000 | 0.0618 | 0.6653 |
|
155 |
+
| 0.0703 | 1.32 | 52500 | 0.0611 | 0.6655 |
|
156 |
+
| 0.0718 | 1.33 | 53000 | 0.0608 | 0.6655 |
|
157 |
+
| 0.0686 | 1.34 | 53500 | 0.0610 | 0.6653 |
|
158 |
+
| 0.0688 | 1.36 | 54000 | 0.0604 | 0.6657 |
|
159 |
+
| 0.0694 | 1.37 | 54500 | 0.0604 | 0.6656 |
|
160 |
+
| 0.0736 | 1.38 | 55000 | 0.0598 | 0.6655 |
|
161 |
+
| 0.0674 | 1.39 | 55500 | 0.0599 | 0.6653 |
|
162 |
+
| 0.0681 | 1.41 | 56000 | 0.0592 | 0.6655 |
|
163 |
+
| 0.07 | 1.42 | 56500 | 0.0592 | 0.6653 |
|
164 |
+
| 0.0704 | 1.43 | 57000 | 0.0591 | 0.6656 |
|
165 |
+
| 0.0719 | 1.44 | 57500 | 0.0588 | 0.6653 |
|
166 |
+
| 0.0667 | 1.46 | 58000 | 0.0587 | 0.6653 |
|
167 |
+
| 0.0694 | 1.47 | 58500 | 0.0583 | 0.6653 |
|
168 |
+
| 0.0709 | 1.48 | 59000 | 0.0579 | 0.6655 |
|
169 |
+
| 0.0661 | 1.49 | 59500 | 0.0578 | 0.6655 |
|
170 |
+
| 0.0682 | 1.51 | 60000 | 0.0575 | 0.6655 |
|
171 |
+
| 0.0668 | 1.52 | 60500 | 0.0578 | 0.6654 |
|
172 |
+
| 0.0684 | 1.53 | 61000 | 0.0575 | 0.6653 |
|
173 |
+
| 0.0688 | 1.55 | 61500 | 0.0571 | 0.6652 |
|
174 |
+
| 0.068 | 1.56 | 62000 | 0.0572 | 0.6653 |
|
175 |
+
| 0.0694 | 1.57 | 62500 | 0.0566 | 0.6654 |
|
176 |
+
| 0.0642 | 1.58 | 63000 | 0.0569 | 0.6653 |
|
177 |
+
| 0.0646 | 1.6 | 63500 | 0.0564 | 0.6655 |
|
178 |
+
| 0.0633 | 1.61 | 64000 | 0.0566 | 0.6653 |
|
179 |
+
| 0.0677 | 1.62 | 64500 | 0.0563 | 0.6653 |
|
180 |
+
| 0.0649 | 1.63 | 65000 | 0.0560 | 0.6652 |
|
181 |
+
| 0.0654 | 1.65 | 65500 | 0.0558 | 0.6654 |
|
182 |
+
| 0.0675 | 1.66 | 66000 | 0.0557 | 0.6654 |
|
183 |
+
| 0.0642 | 1.67 | 66500 | 0.0554 | 0.6653 |
|
184 |
+
| 0.0631 | 1.68 | 67000 | 0.0552 | 0.6653 |
|
185 |
+
| 0.0628 | 1.7 | 67500 | 0.0552 | 0.6652 |
|
186 |
+
| 0.0658 | 1.71 | 68000 | 0.0550 | 0.6652 |
|
187 |
+
| 0.0654 | 1.72 | 68500 | 0.0547 | 0.6653 |
|
188 |
+
| 0.0648 | 1.73 | 69000 | 0.0544 | 0.6652 |
|
189 |
+
| 0.0634 | 1.75 | 69500 | 0.0547 | 0.6652 |
|
190 |
+
| 0.0642 | 1.76 | 70000 | 0.0544 | 0.6654 |
|
191 |
+
| 0.0649 | 1.77 | 70500 | 0.0542 | 0.6652 |
|
192 |
+
| 0.0641 | 1.78 | 71000 | 0.0540 | 0.6652 |
|
193 |
+
| 0.0659 | 1.8 | 71500 | 0.0540 | 0.6653 |
|
194 |
+
| 0.0651 | 1.81 | 72000 | 0.0536 | 0.6652 |
|
195 |
+
| 0.0625 | 1.82 | 72500 | 0.0536 | 0.6652 |
|
196 |
+
| 0.0631 | 1.83 | 73000 | 0.0536 | 0.6651 |
|
197 |
+
| 0.0614 | 1.85 | 73500 | 0.0535 | 0.6651 |
|
198 |
+
| 0.0637 | 1.86 | 74000 | 0.0533 | 0.6652 |
|
199 |
+
| 0.0619 | 1.87 | 74500 | 0.0532 | 0.6652 |
|
200 |
+
| 0.061 | 1.88 | 75000 | 0.0531 | 0.6652 |
|
201 |
+
| 0.0598 | 1.9 | 75500 | 0.0530 | 0.6652 |
|
202 |
+
| 0.0643 | 1.91 | 76000 | 0.0529 | 0.6652 |
|
203 |
+
| 0.0609 | 1.92 | 76500 | 0.0527 | 0.6651 |
|
204 |
+
| 0.06 | 1.93 | 77000 | 0.0527 | 0.6652 |
|
205 |
+
| 0.0627 | 1.95 | 77500 | 0.0527 | 0.6652 |
|
206 |
+
| 0.0607 | 1.96 | 78000 | 0.0526 | 0.6651 |
|
207 |
+
| 0.0607 | 1.97 | 78500 | 0.0525 | 0.6651 |
|
208 |
+
| 0.0608 | 1.98 | 79000 | 0.0525 | 0.6651 |
|
209 |
+
| 0.0609 | 2.0 | 79500 | 0.0525 | 0.6651 |
|
210 |
|
|
|
211 |
|
212 |
+
### Framework versions
|
|
|
213 |
|
214 |
+
- Transformers 4.27.4
|
215 |
+
- Pytorch 2.0.0+cu117
|
216 |
+
- Datasets 2.11.0
|
217 |
+
- Tokenizers 0.13.2
|