Update README.md
Browse files
README.md
CHANGED
@@ -65,28 +65,59 @@ The model was trained according to the OLM GPT2 instructions at this [repo](http
|
|
65 |
|
66 |
The model achieves the following results without any fine-tuning (zero-shot):
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
| Task | Metric | Original GPT2 | OLM GPT2 Dec 2022 (Ours) | Significance of Difference (two-tailed p-value) |
|
69 |
|:------------|:-----------|--------------------:|-------------------------:|----------------------------------:|
|
70 |
-
|rte |acc |0.5307 |0.5199 | |
|
71 |
-
|piqa |acc/acc_norm|0.6289/0.6251 |**0.6692**/**0.6665** |
|
72 |
-
|copa |acc |0.6400 |0.6800 | |
|
73 |
-
|record |f1/em
|
74 |
-
|boolq |acc |0.4872
|
75 |
-
|cb |acc/f1 |0.
|
76 |
-
|hellaswag |acc/acc_norm|0.2892/0.3114
|
77 |
-
|mrpc |acc/f1 |0.5662/0.6911
|
78 |
-
|multirc |acc |0.0189 |0.0220 |
|
79 |
-
|lambada |ppl/acc |40.0554/0.3256
|
80 |
-
|wsc |acc |0.4327 |0.3654
|
81 |
-
|wic |acc |0.4922 |0.5000
|
82 |
-
|mnli |acc |0.3372
|
83 |
-
|qnli |acc |0.5017 |0.4946
|
84 |
-
|cola |mcc |0.0126 |0.0000 |
|
85 |
-
|triviaqa |acc |0.0151
|
86 |
-
|winogrande |acc |0.5162 |0.5051
|
87 |
-
|webqs |acc |0.0030
|
88 |
-
|arc_easy |acc/acc_norm|0.4381/0.3948
|
89 |
-
|arc_challenge|acc/acc_norm|0.1903/0.2270 |0.2090/0.2398
|
90 |
|
91 |
To get these results, we used the Eleuther AI evaluation harness [here](https://github.com/EleutherAI/lm-evaluation-harness),
|
92 |
which can produce results different than those reported in the GPT2 paper. The p-values come from the stderr from the evaluation harness, plus a normal distribution assumption.
|
|
|
65 |
|
66 |
The model achieves the following results without any fine-tuning (zero-shot):
|
67 |
|
68 |
+
| Task |Version| Metric |Value | |Stderr|
|
69 |
+
|--------------|------:|----------------|-----:|---|------|
|
70 |
+
|webqs | 0|acc_p_value |0.0000| | |
|
71 |
+
|triviaqa | 1|acc_p_value |0.0088| | |
|
72 |
+
|arc_easy | 0|acc_p_value |0.0022| | |
|
73 |
+
| | |acc_norm_p_value|0.0049| | |
|
74 |
+
|arc_challenge | 0|acc_p_value |0.1017| | |
|
75 |
+
| | |acc_norm_p_value|0.2957| | |
|
76 |
+
|copa | 0|acc_p_value |0.4070| | |
|
77 |
+
|qnli | 0|acc_p_value |0.2913| | |
|
78 |
+
|lambada_openai| 0|ppl_p_value |0.0000| | |
|
79 |
+
| | |acc_p_value |0.0000| | |
|
80 |
+
|mrpc | 0|acc_p_value |0.0000| | |
|
81 |
+
| | |f1_p_value |0.0000| | |
|
82 |
+
|wsc | 0|acc_p_value |0.1680| | |
|
83 |
+
|winogrande | 0|acc_p_value |0.4314| | |
|
84 |
+
|hellaswag | 0|acc_p_value |0.0000| | |
|
85 |
+
| | |acc_norm_p_value|0.0000| | |
|
86 |
+
|rte | 0|acc_p_value |0.7184| | |
|
87 |
+
|mnli | 0|acc_p_value |0.0071| | |
|
88 |
+
|multirc | 1|acc_p_value |0.4755| | |
|
89 |
+
|cb | 1|acc_p_value |0.2816| | |
|
90 |
+
|boolq | 1|acc_p_value |0.0000| | |
|
91 |
+
|wic | 0|acc_p_value |0.6924| | |
|
92 |
+
|piqa | 0|acc_p_value |0.0004| | |
|
93 |
+
| | |acc_norm_p_value|0.0003| | |
|
94 |
+
|cola | 0|mcc_p_value |0.6880| | |
|
95 |
+
|record | 0|f1_p_value |0.0000| | |
|
96 |
+
| | |em_p_value |0.0000| | |
|
97 |
+
|
98 |
+
|
99 |
| Task | Metric | Original GPT2 | OLM GPT2 Dec 2022 (Ours) | Significance of Difference (two-tailed p-value) |
|
100 |
|:------------|:-----------|--------------------:|-------------------------:|----------------------------------:|
|
101 |
+
|rte |acc |0.5307 |0.5199 |0.7184 |
|
102 |
+
|piqa |acc/acc_norm|0.6289/0.6251 |**0.6692**/**0.6665** |**0.0004**/**0.0003** |
|
103 |
+
|copa |acc |0.6400 |0.6800 |0.4070 |
|
104 |
+
|record |f1/em |**0.7094**/**0.7026**|0.6884/0.6818 |**0.0000**/**0.0000** |
|
105 |
+
|boolq |acc |0.4872 |**0.6021** |**0.0000** |
|
106 |
+
|cb |acc/f1 |0.4107/0.2619 |0.3393/0.1840 |0.2816/NA |
|
107 |
+
|hellaswag |acc/acc_norm|0.2892/0.3114 |**0.3079**/**0.3482** |**0.0000**/**0.0000** |
|
108 |
+
|mrpc |acc/f1 |0.5662/0.6911 |**0.6814**/**0.8099** |**0.0000**/**0.0000** |
|
109 |
+
|multirc |acc |0.0189 |0.0220 |0.4755 |
|
110 |
+
|lambada |ppl/acc |40.0554/0.3256 |**28.3359**/**0.3699** |**0.0000**/**0.0000** |
|
111 |
+
|wsc |acc |0.4327 |0.3654 |0.1680 |
|
112 |
+
|wic |acc |0.4922 |0.5000 |0.6924 |
|
113 |
+
|mnli |acc |0.3372 |**0.3501** |**0.0071** |
|
114 |
+
|qnli |acc |0.5017 |0.4946 |0.2913 |
|
115 |
+
|cola |mcc |0.0126 |0.0000 |0.6880 |
|
116 |
+
|triviaqa |acc |0.0151 |**0.0181** |**0.0088** |
|
117 |
+
|winogrande |acc |0.5162 |0.5051 |0.4314 |
|
118 |
+
|webqs |acc |0.0030 |**0.0079** |**0.0000** |
|
119 |
+
|arc_easy |acc/acc_norm|0.4381/0.3948 |**0.4693**/**0.4230** |**0.0022**/**0.0049** |
|
120 |
+
|arc_challenge|acc/acc_norm|0.1903/0.2270 |0.2090/0.2398 |0.1017/0.2957 |
|
121 |
|
122 |
To get these results, we used the Eleuther AI evaluation harness [here](https://github.com/EleutherAI/lm-evaluation-harness),
|
123 |
which can produce results different than those reported in the GPT2 paper. The p-values come from the stderr from the evaluation harness, plus a normal distribution assumption.
|