File size: 7,190 Bytes
08d4728 8425037 08d4728 8425037 08d4728 8425037 08d4728 8425037 7768f9a 08d4728 8b25971 08d4728 7768f9a 08d4728 7768f9a 08d4728 7768f9a c0e5a11 08d4728 7768f9a 08d4728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
base_model: FacebookAI/xlm-roberta-large
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- mteb
model-index:
- name: omarelshehy/arabic-english-sts-matryoshka-v2-checkpoint-375k
results:
- dataset:
config: en-en
name: MTEB STS17 (en-en)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 87.38302667611983
- type: cosine_spearman
value: 86.87900209442004
- type: euclidean_pearson
value: 87.57406800102012
- type: euclidean_spearman
value: 86.86643232719993
- type: main_score
value: 86.87900209442004
- type: manhattan_pearson
value: 87.67669085683242
- type: manhattan_spearman
value: 86.75687931014386
- type: pearson
value: 87.383027901324
- type: spearman
value: 86.87900209442004
task:
type: STS
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 83.63516310524058
- type: cosine_spearman
value: 83.77655124170212
- type: euclidean_pearson
value: 82.4202692817126
- type: euclidean_spearman
value: 83.45140961256212
- type: main_score
value: 83.77655124170212
- type: manhattan_pearson
value: 82.46545160293968
- type: manhattan_spearman
value: 83.44641098297507
- type: pearson
value: 83.6351624999596
- type: spearman
value: 83.76918950829455
task:
type: STS
- dataset:
config: en-ar
name: MTEB STS17 (en-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 82.29919720659755
- type: cosine_spearman
value: 82.18717939041626
- type: euclidean_pearson
value: 83.49181602363565
- type: euclidean_spearman
value: 82.66998443101066
- type: main_score
value: 82.18717939041626
- type: manhattan_pearson
value: 83.50361267643626
- type: manhattan_spearman
value: 82.68143951875724
- type: pearson
value: 82.29919479978703
- type: spearman
value: 82.18717939041626
task:
type: STS
language:
- ar
- en
---
# SentenceTransformer based on FacebookAI/xlm-roberta-large
🚀 This **v2.0** from the previously released version of [omarelshehy/arabic-english-sts-matryoshka](https://huggingface.co/omarelshehy/arabic-english-sts-matryoshka)
📊 Metrics (MTEB) in this version are better especially on **ar-en** metrics, but again don't just rely on them — test the model yourself and see if it fits your needs! ✅
# Model description
This is a **Bilingual** (Arabic-English) [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for **semantic textual similarity, semantic search, paraphrase mining, text classification, clustering**, and more.
The model handles both languages separately 🌐, but also **interchangeably**, which unlocks flexible applications for developers and researchers who want to further build on Arabic models! 💡
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
## Matryoshka Embeddings 🪆
This model supports Matryoshka embeddings, allowing you to truncate embeddings into smaller sizes to optimize performance and memory usage, based on your task requirements. Available truncation sizes include: **1024, 768, 512, 256, 128, and 64**
You can select the appropriate embedding size for your use case, ensuring flexibility in resource management.
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
matryoshka_dim = 786
model = SentenceTransformer("omarelshehy/arabic-english-sts-matryoshka-v2.0", truncate_dim=matryoshka_dim)
# Run inference
sentences = [
"She enjoyed reading books by the window as the rain poured outside.",
"كانت تستمتع بقراءة الكتب بجانب النافذة بينما كانت الأمطار تتساقط في الخارج.",
"Reading by the window was her favorite thing, especially during rainy days."
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |