File size: 2,654 Bytes
47c7a18
3e83670
47c7a18
 
 
 
 
 
 
 
 
 
 
 
3d6512e
 
9ad3766
 
 
baed5d0
9ad3766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0041a4
 
 
9ad3766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: agpl-3.0
datasets:
- ds4sd/DocLayNet
language:
- en
metrics:
- accuracy
- mape
- precision
- recall
pipeline_tag: object-detection
---

πŸ€— Live Demo here: [https://huggingface.co/spaces/omoured/YOLOv10-Document-Layout-Analysis](https://huggingface.co/spaces/omoured/YOLOv10-Document-Layout-Analysis)

<!-- ABOUT THE PROJECT -->
## About πŸ“‹

The models were fine-tuned using 4xA100 GPUs on the Doclaynet-base dataset, which consists of 69103 training images, 6480 validation images, and 4994 test images.

<p align="center">
  <img src="https://github.com/moured/YOLOv10-Document-Layout-Analysis/raw/main/images/samples.gif" height="320"/>
</p>

## Results πŸ“Š
| Model   | mAP50 | mAP50-95 | Model Weights |
|---------|-------|----------|---------------|
| YOLOv10-x | 0.924 | 0.740 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10x_best.pt) |
| YOLOv10-b | 0.922 | 0.732 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10b_best.pt) |
| YOLOv10-l | 0.921 | 0.732 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10l_best.pt) | 
| YOLOv10-m | 0.917 | 0.737 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10m_best.pt) | 
| YOLOv10-s | 0.905 | 0.713 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10s_best.pt) | 
| YOLOv10-n | 0.892 | 0.685 | [Download](https://github.com/moured/YOLOv10-Document-Layout-Analysis/releases/download/doclaynet_weights/yolov10n_best.pt) |

## Codes πŸ”₯

Check out our Github repo for inference codes: [https://github.com/moured/YOLOv10-Document-Layout-Analysis](https://github.com/moured/YOLOv10-Document-Layout-Analysis) 

## References πŸ“

1. YOLOv10
```
BibTeX
@article{wang2024yolov10,
  title={YOLOv10: Real-Time End-to-End Object Detection},
  author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
  journal={arXiv preprint arXiv:2405.14458},
  year={2024}
}
```

   
2. DocLayNet
```
@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},  
  doi = {10.1145/3534678.353904},
  url = {https://arxiv.org/abs/2206.01062},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022}
}
```

## Contact
LinkedIn: [https://www.linkedin.com/in/omar-moured/](https://www.linkedin.com/in/omar-moured/)