Add SetFit ABSA model
Browse files- 1_Pooling/config.json +10 -0
- README.md +198 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- absa
|
10 |
+
- sentence-transformers
|
11 |
+
- text-classification
|
12 |
+
- generated_from_setfit_trainer
|
13 |
+
widget:
|
14 |
+
- text: FOUR DOLLARS:Lahore is a great place to duck into late-night when you need
|
15 |
+
some really tasty food on the cheap -- you'll likely have trouble finishing the
|
16 |
+
amount of food you get for FOUR DOLLARS.
|
17 |
+
- text: 'passion:An oasis of refinement: Food, though somewhat uneven, often reaches
|
18 |
+
the pinnacles of new American fine cuisine - chef''s passion (and kitchen''s precise
|
19 |
+
execution) is most evident in the fish dishes and soups.'
|
20 |
+
- text: Food:Food is usually very good, though ocasionally I wondered about freshmess
|
21 |
+
of raw vegatables in side orders.
|
22 |
+
- text: Italian decor:Nice restaurant overall, with classic upscale Italian decor.
|
23 |
+
- text: raw vegatables:Food is usually very good, though ocasionally I wondered about
|
24 |
+
freshmess of raw vegatables in side orders.
|
25 |
+
inference: false
|
26 |
+
---
|
27 |
+
|
28 |
+
# SetFit Aspect Model with BAAI/bge-small-en-v1.5
|
29 |
+
|
30 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
31 |
+
|
32 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
33 |
+
|
34 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
35 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
36 |
+
|
37 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
38 |
+
|
39 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
40 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
41 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** SetFit
|
47 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
48 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
49 |
+
- **spaCy Model:** en_core_web_lg
|
50 |
+
- **SetFitABSA Aspect Model:** [omymble/train-eval-bge-small-aspect](https://huggingface.co/omymble/train-eval-bge-small-aspect)
|
51 |
+
- **SetFitABSA Polarity Model:** [omymble/train-eval-bge-small-polarity](https://huggingface.co/omymble/train-eval-bge-small-polarity)
|
52 |
+
- **Maximum Sequence Length:** 512 tokens
|
53 |
+
- **Number of Classes:** 2 classes
|
54 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
55 |
+
<!-- - **Language:** Unknown -->
|
56 |
+
<!-- - **License:** Unknown -->
|
57 |
+
|
58 |
+
### Model Sources
|
59 |
+
|
60 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
61 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
62 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
63 |
+
|
64 |
+
### Model Labels
|
65 |
+
| Label | Examples |
|
66 |
+
|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
67 |
+
| aspect | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
|
68 |
+
| no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |
|
69 |
+
|
70 |
+
## Uses
|
71 |
+
|
72 |
+
### Direct Use for Inference
|
73 |
+
|
74 |
+
First install the SetFit library:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
pip install setfit
|
78 |
+
```
|
79 |
+
|
80 |
+
Then you can load this model and run inference.
|
81 |
+
|
82 |
+
```python
|
83 |
+
from setfit import AbsaModel
|
84 |
+
|
85 |
+
# Download from the 🤗 Hub
|
86 |
+
model = AbsaModel.from_pretrained(
|
87 |
+
"omymble/train-eval-bge-small-aspect",
|
88 |
+
"omymble/train-eval-bge-small-polarity",
|
89 |
+
)
|
90 |
+
# Run inference
|
91 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
92 |
+
```
|
93 |
+
|
94 |
+
<!--
|
95 |
+
### Downstream Use
|
96 |
+
|
97 |
+
*List how someone could finetune this model on their own dataset.*
|
98 |
+
-->
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Out-of-Scope Use
|
102 |
+
|
103 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
## Bias, Risks and Limitations
|
108 |
+
|
109 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Recommendations
|
114 |
+
|
115 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
## Training Details
|
119 |
+
|
120 |
+
### Training Set Metrics
|
121 |
+
| Training set | Min | Median | Max |
|
122 |
+
|:-------------|:----|:--------|:----|
|
123 |
+
| Word count | 4 | 17.9296 | 37 |
|
124 |
+
|
125 |
+
| Label | Training Sample Count |
|
126 |
+
|:----------|:----------------------|
|
127 |
+
| no aspect | 71 |
|
128 |
+
| aspect | 128 |
|
129 |
+
|
130 |
+
### Training Hyperparameters
|
131 |
+
- batch_size: (128, 128)
|
132 |
+
- num_epochs: (1, 16)
|
133 |
+
- max_steps: -1
|
134 |
+
- sampling_strategy: oversampling
|
135 |
+
- body_learning_rate: (2e-05, 1e-05)
|
136 |
+
- head_learning_rate: 0.01
|
137 |
+
- loss: CosineSimilarityLoss
|
138 |
+
- distance_metric: cosine_distance
|
139 |
+
- margin: 0.25
|
140 |
+
- end_to_end: False
|
141 |
+
- use_amp: True
|
142 |
+
- warmup_proportion: 0.1
|
143 |
+
- seed: 42
|
144 |
+
- eval_max_steps: -1
|
145 |
+
- load_best_model_at_end: True
|
146 |
+
|
147 |
+
### Training Results
|
148 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
149 |
+
|:----------:|:------:|:-------------:|:---------------:|
|
150 |
+
| 0.0059 | 1 | 0.2686 | - |
|
151 |
+
| **0.2959** | **50** | **0.1567** | **0.2585** |
|
152 |
+
| 0.5917 | 100 | 0.0103 | 0.2937 |
|
153 |
+
| 0.8876 | 150 | 0.0095 | 0.2935 |
|
154 |
+
|
155 |
+
* The bold row denotes the saved checkpoint.
|
156 |
+
### Framework Versions
|
157 |
+
- Python: 3.10.12
|
158 |
+
- SetFit: 1.0.3
|
159 |
+
- Sentence Transformers: 3.0.1
|
160 |
+
- spaCy: 3.7.4
|
161 |
+
- Transformers: 4.39.0
|
162 |
+
- PyTorch: 2.3.1+cu121
|
163 |
+
- Datasets: 2.20.0
|
164 |
+
- Tokenizers: 0.15.2
|
165 |
+
|
166 |
+
## Citation
|
167 |
+
|
168 |
+
### BibTeX
|
169 |
+
```bibtex
|
170 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
171 |
+
doi = {10.48550/ARXIV.2209.11055},
|
172 |
+
url = {https://arxiv.org/abs/2209.11055},
|
173 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
174 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
175 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
176 |
+
publisher = {arXiv},
|
177 |
+
year = {2022},
|
178 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
179 |
+
}
|
180 |
+
```
|
181 |
+
|
182 |
+
<!--
|
183 |
+
## Glossary
|
184 |
+
|
185 |
+
*Clearly define terms in order to be accessible across audiences.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
<!--
|
189 |
+
## Model Card Authors
|
190 |
+
|
191 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
192 |
+
-->
|
193 |
+
|
194 |
+
<!--
|
195 |
+
## Model Card Contact
|
196 |
+
|
197 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
198 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/step_50",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.39.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"no aspect",
|
5 |
+
"aspect"
|
6 |
+
],
|
7 |
+
"spacy_model": "en_core_web_lg",
|
8 |
+
"span_context": 0
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6106d6b38268be33d6b2d346e830fe46f187875673a280afb65c4a707ad8a1a9
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ae282086fe6fee07c88c09d7ad21013025ef76aa256f5c8796bad95d40e45fc
|
3 |
+
size 3919
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|